1
|
Martins A, da Silva DD, Silva R, Carvalho F, Guilhermino L. Long-term effects of lithium and lithium-microplastic mixtures on the model species Daphnia magna: Toxicological interactions and implications to 'One Health'. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155934. [PMID: 35577095 DOI: 10.1016/j.scitotenv.2022.155934] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination with lithium (Li) and microplastics (MP) has been steadily increasing and this trend is expected to continue in the future. Many freshwater ecosystems, which are crucial to reach the United Nations Sustainable Development Goals, are particularly vulnerable to Li and MP contamination, and other pressures. The long-term effects of Li, either alone or combined with MP (Li-MP mixtures), were investigated using the freshwater zooplankton micro-crustacean Daphnia magna as model species. In the laboratory, D. magna females were exposed for 21 days to water concentrations of Li (0.02, 0.04, 0.08 mg/L) or Li-MP mixtures (0.02 Li + 0.04 MP, 0.04 Li + 0.09 MP mg/L, 0.08 Li + 0.19 MP mg/L). In the range of concentrations tested, Li and Li-MP mixtures caused parental mortality, and decreased the somatic growth (up to 20% and 40% reduction, respectively) and the reproductive success (up to 93% and 90% reduction, respectively). The 21-day EC50s of Li and Li-MP mixtures on D. magna reproduction were 0.039 mg/L and 0.039 Li + 0.086 MP mg/L, respectively. Under exposure to the highest concentration of Li (0.08 mg/L) and Li-MP mixtures (0.08 Li + 0.19 MP mg/L), the mean of D. magna population growth rate was reduced by 67% and 58%, respectively. Based on the population growth rate and using data from a bioassay testing the same concentrations of MP alone and carried simultaneously, the toxicological interaction between Li and MP was antagonism under exposure to the lowest and the highest concentrations of Li-MP mixtures, and synergism under exposure to the medium concentration of Li-MP mixtures. These findings highlight the need of further investigating the combined effects of contaminants, and the threat of long-term environmental contamination with Li and MP to freshwater zooplankton, biodiversity, ecosystem services and 'One Health'.
Collapse
Affiliation(s)
- Alexandra Martins
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal.
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|