1
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
2
|
Québatte M, Dehio C. Bartonella gene transfer agent: Evolution, function, and proposed role in host adaptation. Cell Microbiol 2019; 21:e13068. [PMID: 31231937 PMCID: PMC6899734 DOI: 10.1111/cmi.13068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus‐specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.
Collapse
|
3
|
Fogg PCM. Identification and characterization of a direct activator of a gene transfer agent. Nat Commun 2019; 10:595. [PMID: 30723210 PMCID: PMC6363796 DOI: 10.1038/s41467-019-08526-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/15/2019] [Indexed: 11/10/2022] Open
Abstract
Gene transfer agents (GTAs) are thought to be ancient bacteriophages that have been co-opted into serving their host and can now transfer any gene between bacteria. Production of GTAs is controlled by several global regulators through unclear mechanisms. In Rhodobacter capsulatus, gene rcc01865 encodes a putative regulatory protein that is essential for GTA production. Here, I show that rcc01865 (hereafter gafA) encodes a transcriptional regulator that binds to the GTA promoter to initiate production of structural and DNA packaging components. Expression of gafA is in turn controlled by the pleiotropic regulator protein CtrA and the quorum-sensing regulator GtaR. GafA and CtrA work together to promote GTA maturation and eventual release through cell lysis. Identification of GafA as a direct GTA regulator allows the first integrated regulatory model to be proposed and paves the way for discovery of GTAs in other species that possess gafA homologues.
Collapse
Affiliation(s)
- Paul C M Fogg
- Biology Department, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Mushtaq M, Zubair S, Råsbäck T, Bongcam-Rudloff E, Jansson DS. Brachyspira suanatina sp. nov., an enteropathogenic intestinal spirochaete isolated from pigs and mallards: genomic and phenotypic characteristics. BMC Microbiol 2015; 15:208. [PMID: 26458507 PMCID: PMC4603578 DOI: 10.1186/s12866-015-0537-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background The genus Brachyspira currently encompasses seven valid species that colonize the intestines of mammals and birds. In a previous study a group of strongly haemolytic isolates from pigs and mallards was provisionally described as a new species within genus Brachyspira, “B. suanatina”, and enteropathogenic properties were demonstrated in a porcine challenge model. Methods In the current study characterization of B. suanatina was performed on the basis of cell morphology, growth characteristics, enzyme profiles, DNA-DNA hybridization (DDH) and whole genome comparisons. The draft genome sequence of B. suanatina strain AN4859/03 was determined and compared with the available genomes of all valid species of Brachyspira. Results According to morphological traits, growth characteristics and enzymatic profiles, B. suanatina was similar to the type strain of B. hyodysenteriae, but using the recommended threshold value of 70 % similarity by DDH it did not belong to any of the recognized Brachyspira species (range 16–64 % similarity). This was further supported by average nucleotide identity values. Phylogenetic analysis performed using housekeeping genes and core genomes of all valid Brachyspira sp. and “B. hampsonii” revealed that B. suanatina and B. intermedia formed a clade distinct from B. hyodysenteriae. By comparing the genomes of the three closely related species B. intermedia, B. hyodysenteriae and B. suanatina similar profiles of general genomic features and distribution of genes in different functional categories were obtained. However, the genome size of B. hyodysenteriae was smallest among the species, suggesting the possibility of reductive evolution in the divergence of this species. A bacteriophage region and a putative plasmid sequence were also found in the genome of B. suanatina strain AN4859/03. Conclusions The results of our study suggest that despite being similar to B. hyodysenteriae phenotypically, B. suanatina should be regarded as a separate species based on its genetic characteristics. Based on characteristics presented in this report we propose that strains AN4859/03, AN1681:1/04, AN2384/04 and Dk12570-2 from pigs in Sweden and Denmark, and strains AN3949:2/02 and AN1418:2/01 isolated from mallards in Sweden, represent a unique species within genus Brachyspira. For this new species we propose the name B. suanatina for which the type strain is AN4859/03T (=ATCC® BAA-2592™ = DSM 100974T). Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0537-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mamoona Mushtaq
- Department of Animal Breeding and Genetics, Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), SE750 07, Uppsala, Sweden.
| | - Saima Zubair
- Department of Animal Breeding and Genetics, Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), SE750 07, Uppsala, Sweden.
| | - Therese Råsbäck
- Department of Bacteriology, National Veterinary Institute (SVA), SE751 89, Uppsala, Sweden.
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), SE750 07, Uppsala, Sweden.
| | - Désirée S Jansson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), SE751 89, Uppsala, Sweden. .,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE750 07, Uppsala, Sweden.
| |
Collapse
|
5
|
Lang AS, Zhaxybayeva O, Beatty JT. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 2012; 10:472-82. [PMID: 22683880 DOI: 10.1038/nrmicro2802] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Horizontal gene transfer is important in the evolution of bacterial and archaeal genomes. An interesting genetic exchange process is carried out by diverse phage-like gene transfer agents (GTAs) that are found in a wide range of prokaryotes. Although GTAs resemble phages, they lack the hallmark capabilities that define typical phages, and they package random pieces of the producing cell's genome. In this Review, we discuss the defining characteristics of the GTAs that have been identified to date, along with potential functions for these agents and the possible evolutionary forces that act on the genes involved in their production.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador A1B 3X9, Canada.
| | | | | |
Collapse
|
6
|
Wanchanthuek P, Bellgard MI, La T, Ryan K, Moolhuijzen P, Chapman B, Black M, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ. The complete genome sequence of the pathogenic intestinal spirochete Brachyspira pilosicoli and comparison with other Brachyspira genomes. PLoS One 2010; 5:e11455. [PMID: 20625514 PMCID: PMC2897892 DOI: 10.1371/journal.pone.0011455] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/13/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes "intestinal spirochetosis", a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence. METHODOLOGY/PRINCIPAL FINDINGS The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence. CONCLUSIONS/SIGNIFICANCE The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence.
Collapse
Affiliation(s)
- Phatthanaphong Wanchanthuek
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
- Faculty of Informatics, Mahasarakham University, Mahasarakham, Thailand
| | - Matthew I. Bellgard
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Tom La
- Animal Research Institute, School of Veterinary and Biomedical Science, Murdoch University, Perth, Western Australia, Australia
| | - Karon Ryan
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Michael Black
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - David Schibeci
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Adam Hunter
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Nyree D. Phillips
- Animal Research Institute, School of Veterinary and Biomedical Science, Murdoch University, Perth, Western Australia, Australia
| | - David J. Hampson
- Animal Research Institute, School of Veterinary and Biomedical Science, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Multiple-locus variable-number tandem-repeat analysis of the swine dysentery pathogen, Brachyspira hyodysenteriae. J Clin Microbiol 2010; 48:2859-65. [PMID: 20554811 DOI: 10.1128/jcm.00348-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spirochete Brachyspira hyodysenteriae is the causative agent of swine dysentery, a severe colonic infection of pigs that has a considerable economic impact in many swine-producing countries. In spite of its importance, knowledge about the global epidemiology and population structure of B. hyodysenteriae is limited. Progress in this area has been hampered by the lack of a low-cost, portable, and discriminatory method for strain typing. The aim of the current study was to develop and test a multiple-locus variable-number tandem-repeat analysis (MLVA) method that could be used in basic veterinary diagnostic microbiology laboratories equipped with PCR technology or in more advanced laboratories with access to capillary electrophoresis. Based on eight loci, and when performed on isolates from different farms in different countries, as well as type and reference strains, the MLVA technique developed was highly discriminatory (Hunter and Gaston discriminatory index, 0.938 [95% confidence interval, 0.9175 to 0.9584]) while retaining a high phylogenetic value. Using the technique, the species was shown to be diverse (44 MLVA types from 172 isolates and strains), although isolates were stable in herds over time. The population structure appeared to be clonal. The finding of B. hyodysenteriae MLVA type 3 in piggeries in three European countries, as well as other, related, strains in different countries, suggests that spreading of the pathogen via carrier pigs is likely. MLVA overcame drawbacks associated with previous typing techniques for B. hyodysenteriae and was a powerful method for epidemiologic and population structure studies on this important pathogenic spirochete.
Collapse
|
8
|
Hampson DJ, Ahmed N. Spirochaetes as intestinal pathogens: lessons from a Brachyspira genome. Gut Pathog 2009; 1:10. [PMID: 19405984 PMCID: PMC2680911 DOI: 10.1186/1757-4749-1-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/01/2009] [Indexed: 02/06/2023] Open
Abstract
Anaerobic spirochaetes of the genus Brachyspira have long been known as important gut pathogens of pigs, but increasingly they are recognised as causing disease in birds and other animal species, including human beings. The genome sequence of the major swine pathogen Brachyspira hyodysenteriae was recently published, and this revealed extensive genome optimisation that leads to adaptation to the complex environment of the colon. The genome sequences of other pathogenic and non-pathogenic Brachyspira species are becoming available, and this data will help to reveal how these species have evolved and adapted to varied lifestyles in the large intestines of different species, and why some but not others can induce colitis and diarrhoea.
Collapse
Affiliation(s)
- David J Hampson
- Animal Research Institute, School of Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | | |
Collapse
|
9
|
Identification of a divided genome for VSH-1, the prophage-like gene transfer agent of Brachyspira hyodysenteriae. J Bacteriol 2008; 191:1719-21. [PMID: 19103931 DOI: 10.1128/jb.01359-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Brachyspira hyodysenteriae B204 genome sequence revealed three VSH-1 tail genes, hvp31, hvp60, and hvp37, in a 3.6-kb cluster. The location and transcription direction of these genes relative to those of the previously described VSH-1 16.3-kb gene operon indicate that the gene transfer agent VSH-1 has a noncontiguous, divided genome.
Collapse
|
10
|
Collateral effects of antibiotics: carbadox and metronidazole induce VSH-1 and facilitate gene transfer among Brachyspira hyodysenteriae strains. Appl Environ Microbiol 2008; 74:2950-6. [PMID: 18359835 DOI: 10.1128/aem.00189-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Brachyspira hyodysenteriae is an anaerobic spirochete and the etiologic agent of swine dysentery. The genome of this spirochete contains a mitomycin C-inducible, prophage-like gene transfer agent designated VSH-1. VSH-1 particles package random 7.5-kb fragments of the B. hyodysenteriae genome and transfer genes between B. hyodysenteriae cells. The chemicals and conditions inducing VSH-1 production are largely unknown. Antibiotics used in swine management and stressors inducing traditional prophages might induce VSH-1 and thereby stimulate lateral gene transfer between B. hyodysenteriae cells. In these studies, VSH-1 induction was initially detected by a quantitative real-time reverse transcriptase PCR assay evaluating increased transcription of hvp38 (VSH-1 head protein gene). VSH-1 induction was confirmed by detecting VSH-1-associated 7.5-kb DNA and VSH-1 particles in B. hyodysenteriae cultures. Nine antibiotics (chlortetracycline, lincomycin, tylosin, tiamulin, virginiamycin, ampicillin, ceftriaxone, vancomycin, and florfenicol) at concentrations affecting B. hyodysenteriae growth did not induce VSH-1 production. By contrast, VSH-1 was detected in B. hyodysenteriae cultures treated with mitomycin C (10 microg/ml), carbadox (0.5 microg/ml), metronidazole (0.5 microg/ml), and H(2)O(2) (300 microM). Carbadox- and metronidazole-induced VSH-1 particles transmitted tylosin and chloramphenicol resistance determinants between B. hyodysenteriae strains. The results of these studies suggest that certain antibiotics may induce the production of prophage or prophage-like elements by intestinal bacteria and thereby impact intestinal microbial ecology.
Collapse
|