1
|
Beraud-Martínez LK, Betancourt-Lozano M, Gómez-Gil B, Asaff-Torres A, Monroy-Hermosillo OA, Franco-Nava MÁ. Methylotrophic methanogenesis induced by ammonia nitrogen in an anaerobic digestion system. Anaerobe 2024; 88:102877. [PMID: 38866129 DOI: 10.1016/j.anaerobe.2024.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES This lab-scale study aimed to investigate the effect of total ammonia nitrogen (TAN) stress on the methanogenic activity and the taxonomic and functional profiles of the microbial community of anaerobic sludge (AS) from a full-scale bioreactor. METHODS The AS was subjected to a stepwise increase in TAN every 14 days at concentrations of 1, 2, 2.5, 3, 3.5, and 4 g TAN/L (Acclimated-AS or AAS). This acclimation stage was followed by an ammonia stress stage (4 g/L). A blank-AS (BAS) was maintained without TAN during the acclimation stage. In the second stress stage (ST), the BAS was divided into two new treatments: a control (BAS') and one that received a shock load of TAN of 4 g/L (SBAS'). Methane production was measured, and a metagenomic analysis was conducted to describe the microbial community. RESULTS A decrease in the relative abundance of Methanothrix soehngenii of 16 % was related to a decrease of 23 % in the methanogenic capacity of AAS when comparing with the final stage of BAS. However, recovery was observed at 3.5 g TAN/L, and a shift to methylotrophic metabolism occurred, indicated by a 4-fold increase in abundance of Methanosarcina mazei. The functional analysis of sludge metagenomes indicated that no statistical differences (p > 0.05, RM ANOVA) were found in the relative abundance of methanogenic genes that initiate acetoclastic and hydrogenotrophic pathways (acetyl-CoA synthetase, ACSS; acetate kinase, ackA; phosphate acetyltransferase, pta; and formylmethanofuran dehydrogenase subunit A, fwdA) into the BAS and AAS during the acclimation phase. The same was observed between groups of genes associated with methanogenesis from methylated compounds. In contrast, statistical differences (p < 0.05, one-way ANOVA) in the relative abundance of these genes were recorded during ST. The functional profiles of the genes involved in acetoclastic, hydrogenotrophic, and methylotrophic methanogenic pathways were brought to light for acclimatation and stress experimental stages. CONCLUSIONS TAN inhibited methanogenic activity and acetoclastic metabolism. The gradual acclimatization to TAN leads to metabolic and taxonomic changes that allow for the subsequent recovery of methanogenic functionality. The study highlights the importance of adequate management of anaerobic bioprocesses with high nitrogen loads to maintain the methanogenic functionality of the microbial community.
Collapse
Affiliation(s)
- Liov Karel Beraud-Martínez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unidad Mazatlán, Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unidad Mazatlán, Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unidad Mazatlán, Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Ali Asaff-Torres
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Unidad Hermosillo, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304, Hermosillo, Sonora, Mexico
| | - Oscar Armando Monroy-Hermosillo
- Universidad Autónoma Metropolitana. Biotechnology Department, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Iztapalapa, Cd. México, Mexico
| | - Miguel Ángel Franco-Nava
- Tecnológico Nacional de México, Campus Mazatlán, Calle Corsario 1 No. 203 Col. Urías, A.P. 757, Mazatlán, Sinaloa, 82070, Mexico.
| |
Collapse
|
2
|
Gu P, Zhang X, Chen A, Tian Q, Zhang J, Li T, Li X, Wang G. Microbes and nutrient shift in a Closed Aquatic Ecosystem (CAES) during four weeks of operation. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:91-98. [PMID: 39067997 DOI: 10.1016/j.lssr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 07/30/2024]
Abstract
A Closed Aquatic Ecosystem (CAES) housed an aquatic plant Ceratophyllum demersum, zebrafish (Danio rerio), and microbes that were simultaneously obtained with the zebrafish, and it was used to study the operation of the ecosystem. The results indicated that the CAES can operate steadily for about 4 weeks. The dissolved oxygen (DO), pH, and conductivity values of the ecosystem regularly oscillated, while the total nitrogen of the water decreased and the total phosphate slightly increased. Additionally, the chemical oxygen demand (COD, a measure of organic compounds) of the water after the experiment increased to 39 times more than that of the water before the experiment. The meta-genomic data showed that the number of genera decreased by 38 % and the top 10 most abundant genera were almost completely different before and after the experiment, which demonstrated a great shift in the microbes during the operation process. These results suggested that although the CAES operated steadily during the 28-day experiment, there were more organic materials and less nitrogen in the water by the end of the experiment, which may have influenced the structure and operation of the ecosystem. Thus, it is necessary to remove superfluous plant biomass from the CAES and supply nitrogen to keep the ecosystem stable.
Collapse
Affiliation(s)
- Peifan Gu
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianyuan Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anji Chen
- Wuhan Britain-China School, Wuhan 430030, China
| | - Qing Tian
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jing Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Li
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoyan Li
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Gaohong Wang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Pham LHP, Colon-Ascanio M, Ou J, Ly K, Hu P, Choy JS, Luo X. Probing mutual interactions between Pseudomonas aeruginosa and Candida albicans in a biofabricated membrane-based microfluidic platform. LAB ON A CHIP 2022; 22:4349-4358. [PMID: 36239125 PMCID: PMC9756269 DOI: 10.1039/d2lc00728b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbes are typically found in multi-species (polymicrobial) communities. Cooperative and competitive interactions between species, mediated by diffusible factors and physical contact, leads to highly dynamic communities that undergo changes in composition diversity and size. Infections can be more severe or more difficult to treat when caused by multiple species. Interactions between species can improve the ability of one or more species to tolerate anti-microbial treatments and host defenses. Pseudomonas aeruginosa (Pa), a ubiquitous bacterium, and the opportunistic pathogenic yeast, Candida albicans (Ca), are frequently found together in cystic fibrosis lung infections and wound infections. While significant progress has been made in determining interactions between Pa and Ca, there are still important questions that remain unanswered. Here, we probe the mutual interactions between Pa and Ca in a custom-made microfluidic device using biopolymer chitosan membranes that support cross-species communication. By assembling microbes in physically separated, chemically communicating populations or bringing into direct interactions in a mixed culture, in situ polymicrobial growth and biofilm morphology were qualitatively characterized and quantified. Our work reveals new dynamic details of their mutual interactions including cooperation, competition, invasion, and biofilm formation. The membrane-based microfluidic platform can be further developed to understand the polymicrobial interactions within a controlled interactive microenvironment to improve microbial infection prevention and treatment.
Collapse
Affiliation(s)
- Le Hoang Phu Pham
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| | - Mariliz Colon-Ascanio
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Jin Ou
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Khanh Ly
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA
| | - Piao Hu
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| | - John S Choy
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Xiaolong Luo
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
4
|
Nair S, Li C, Mou S, Zhang Z, Zhang Y. A Novel Phage Indirectly Regulates Diatom Growth by Infecting a Diatom-Associated Biofilm-Forming Bacterium. Appl Environ Microbiol 2022; 88:e0213821. [PMID: 35020448 PMCID: PMC8904054 DOI: 10.1128/aem.02138-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Algae and heterotrophic bacteria have close and intricate interactions, which are regulated by multiple factors in the natural environment. Phages are the major factor determining bacterial mortality rates. However, their impacts on the alga-associated bacteria and thus on the alga-bacterium interactions are poorly understood. Here, we obtained a diatom-associated bacterium, Stappia indica SNL01, that could form a biofilm and had an inhibitory effect on the growth of the diatom Thalassiosira pseudonana. Meanwhile, phage SI01, with a double-stranded circular DNA genome (44,247 bp), infecting S. indica SNL01 was isolated. Phylogenetic analysis revealed that phage SI01 represents a novel member of the Podoviridae family. The phage contained multiple lysis genes encoding cell wall-lysing muramidase and spore cortex-lysing SleB, as well as depolymerase-like tail spike protein. By lysing the host bacterium and inhibiting the formation of biofilm, this phage could indirectly promote the growth of the diatom. Our results provide new insights into how phages indirectly regulate algal growth by infecting bacteria that are closely associated with algae or in the phycosphere. IMPORTANCE The impact of phage infection on the alga-bacterium relationship in the ocean is poorly understood. Here, a novel phage infecting the diatom-associated bacterium Stappia indica SNL01 was isolated. This bacterium could form a biofilm and had a negative effect on diatom growth. We revealed that this phage contained multiple lysis genes and could inhibit the formation of the bacterial biofilm, thus indirectly promoting diatom growth. This study suggests that phages not only are important regulators of bacteria but also have substantial indirect effects on algae and the alga-bacterium relationship.
Collapse
Affiliation(s)
- Shailesh Nair
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanli Mou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Cayetano RDA, Kim GB, Park J, Yang YH, Jeon BH, Jang M, Kim SH. Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery. BIORESOURCE TECHNOLOGY 2022; 344:126309. [PMID: 34798247 DOI: 10.1016/j.biortech.2021.126309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The efficiency of anaerobic digestion could be increased by promoting microbial retention through biofilm development. The inclusion of certain types of biofilm carriers has differentiated existing AD biofilm reactors through their respective mode of biofilm growth. Bacteria and archaea engaged in methanogenesis during anaerobic processes potentially build biofilms by adhering or attaching to biofilm carriers. Meta-analyzed results depicted varying degrees of biogas enhancement within AD biofilm reactors. Furthermore, different carrier materials highly induced the dynamicity of the dominant microbial population in each system. It is suggested that the promotion of surface contact and improvement of interspecies electron transport have greatly impacted the treatment results. Modern spectroscopy techniques have been and will continue to give essential information regarding biofilm's composition and structural organization which can be useful in elucidating the added function of this special layer of microbial cells.
Collapse
Affiliation(s)
- Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Torkzadeh H, Zodrow KR, Bridges WC, Cates EL. Quantification and modeling of the response of surface biofilm growth to continuous low intensity UVC irradiation. WATER RESEARCH 2021; 193:116895. [PMID: 33581401 DOI: 10.1016/j.watres.2021.116895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Though germicidal UV radiation is widely applied for disinfection of water and food, it may also be used to prevent bacterial growth and colonization on surfaces within engineered systems. Emerging UV source technologies, such as ultraviolet-C (UVC) LEDs, present new opportunities for deterring biofilms within certain devices, including medical equipment, food equipment, and potentially in plumbing fixtures for prevention of opportunistic respiratory pathogen infections. Rational design for incorporation of UVC sources into devices with complex internal geometries is currently hampered by the lack of an engineering framework for predicting reductions in biofilm growth rates in response to continuous low-intensity irradiation. Herein we have developed an experimental apparatus and method for growing biofilms under concurrent UV irradiation and quantifying the resulting suppression of surface growth. Under accelerated growth conditions over 48 h, E. coli surface biovolume was reduced by 95% compared to control biofilms (grown in the dark) by a UV intensity of 50.5 µW/cm2 (254 nm). The required intensity for biofilm prevention was higher than expected, given the UV dose response of the bacteria employed and the cumulative doses delivered to the test surfaces. The results indicate that biofilms can establish even under irradiation conditions that would result in complete inactivation of planktonic cells, likely due to the shielding effects of colloidal material and microbial exudates. A pseudo-mechanistic model was also developed which correlated UV intensity to the resultant reduction in specific surface biovolume.
Collapse
Affiliation(s)
- Hamed Torkzadeh
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Katherine R Zodrow
- Environmental Engineering Department, Montana Technological University, Butte, MT 59701, USA
| | - William C Bridges
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ezra L Cates
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
7
|
Gómez G, Salinas M, Ruiz-Tagle N, Sossa K, Vidal G. Molecular weight distribution of the recalcitrant organic matter contained in kraft mill effluents and the identification of microbial consortia responsible for an anaerobic biodegradable fraction. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:281-291. [PMID: 31698987 DOI: 10.1080/10934529.2019.1688019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/19/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
The objective of this research was to evaluate the distribution of the molecular weights of the recalcitrant organic matter contained in kraft mill effluents and identify microbial consortia responsible for an anaerobic biodegradable fraction. As a result, the average removal efficiencies of chemical organic demand (COD) and biological oxygen demand (BOD5) during the entire period of operation were 28% and 53%, respectively. The non-biodegradable organic matter was detected at molecular weights less than 1000 Da. However, most of the organic matter was in the molecular weight fraction higher than 10000 Da with 32 ± 11.6% COD as well as color (42.3 ± 8.7%), total phenolic compounds (35.9 ± 7.9%) and adsorbable organic compounds (AOX) (13.0 ± 2.7%). Methanogenic acetoclastic archaea of the genera Methanomethylovorans and Methanosarcina were found in the surface and middle zones of the reactor. Moreover, Methanosaeta and Methanolinea were identified in the low zone of the reactor. In all zones of the reactor, Desulfomicrobium and Desulfovibrio were found to be the most dominant genera of sulfate-reducing bacteria (SRB).
Collapse
Affiliation(s)
- Gloria Gómez
- Engineering and Biotechnology Environmental Group, Environmental Science Faculty & Center EULA-Chile, University of Concepción, Concepción, Chile
| | - Miguel Salinas
- Area Servicios Nueva Aldea, Wood Pulp & Energy, Celulosa Arauco y Constitución S.A, Nueva Aldea, Chile
| | - Nathaly Ruiz-Tagle
- Biofilm Laboratory and Environmental Microbiology, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Katherine Sossa
- Biofilm Laboratory and Environmental Microbiology, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Gladys Vidal
- Engineering and Biotechnology Environmental Group, Environmental Science Faculty & Center EULA-Chile, University of Concepción, Concepción, Chile
| |
Collapse
|
8
|
Oyarzun P, Alarcón L, Calabriano G, Bejarano J, Nuñez D, Ruiz-Tagle N, Urrutia H. Trickling filter technology for biotreatment of nitrogenous compounds emitted in exhaust gases from fishmeal plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:165-170. [PMID: 30472559 DOI: 10.1016/j.jenvman.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/10/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Odour emissions are a major environmental issue associated with fishmeal production. Laboratory-scale biotrickling filters (BTFs) were inoculated with microbial consortia derived from sewage sludge, with the goal to study the biotreatment of low-loads of methylamines and ammonia that are main components of odorous exhaust gases produced by fishmeal processing plants. A BTF packed with ceramic rings was subjected to a real fishmeal plant emission containing trimethylamine (TMA), dimethylamine (DMA) and monomethylamine (MMA). The highest elimination capacities (ECs) obtained were 372 mg TMA m-3 h-1, 5.518 mg DMA m-3 h-1 and 1.038 mg MMA m-3 h-1, with maximal removal efficiencies of 92% (TMA), 83% (DMA) and 95% (MMA) after 30 days operation. In a different experiment, a polyurethane foam packing was employed to treat ammonia (NH3) at low inlet loads, reaching an EC of 47.19 mg N m-3 h-1 with 99.8% efficiency (inlet load of 47.27 mg N m-3 h-1). Likewise, the microbial community of the polyurethane-associated biofilm was diverse and stable during operation. These results suggested that elimination of volatile amino-compounds using BTFs inoculated with a methylotrophic microbial consortium holds potential for odour removal. In addition, sequencing analysis of 16S rDNA gene fragments allowed the identification of heterotrophic ammonia-oxidizing bacteria that are promising candidates to effectively maintain ammonia elimination in a biotreatment operation of nitrogenous compounds present in exhaust gases from fishmeal facilities.
Collapse
Affiliation(s)
- Patricio Oyarzun
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
| | - Lissete Alarcón
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Guillermo Calabriano
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Jorge Bejarano
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Dariela Nuñez
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Nathaly Ruiz-Tagle
- Centro de Biotecnología, Universidad de Concepción, Víctor Lamas 1290, Casilla 160-C, Concepción, Chile
| | - Homero Urrutia
- Centro de Biotecnología, Universidad de Concepción, Víctor Lamas 1290, Casilla 160-C, Concepción, Chile
| |
Collapse
|
9
|
Heggendorn FL, Fraga AGM, Ferreira DDC, Gonçalves LS, Lione VDOF, Lutterbach MTS. Sulfate-Reducing Bacteria: Biofilm Formation and Corrosive Activity in Endodontic Files. Int J Dent 2018; 2018:8303450. [PMID: 29861730 PMCID: PMC5976933 DOI: 10.1155/2018/8303450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/06/2018] [Accepted: 03/22/2018] [Indexed: 11/17/2022] Open
Abstract
AIM This study describes the biofilm formation and the corrosive capacity of sulfate-reducing bacteria (SRB) on the metallic structure of used endodontic files. METHODS Sulfate-reducing bacteria (SRB) (Desulfovibrio desulfuricans oral and Desulfovibrio fairfieldensis or D. desulfuricans environmental) were inoculated into the culture media (Postgate C culture medium or modified Postgate E culture medium). The biocorrosive potential of these bacteria will be an important component of a biopharmaceutical under development called BACCOR. Afterwards, four used endodontic files (UEFs) were separately inoculated into a specific culture media for 445 days at 30°C in an incubator. The four UEFs were placed in a scanning electron microscope (SEM) and analyzed by the energy-dispersive X-ray spectrometry (EDS). RESULTS The confocal laser scanning microscopic images indicate the presence of biofilm in the four samples. The SEM and SEM-EDS revealed the presence of rough, irregular structures adhering along the metallic surface of the used endodontic files, suggesting a mature calcified biofilm with a high concentration of Ca, P, C, and S. CONCLUSION The formation of SRB biofilms on used endodontic files shows characteristics that may contribute to the biocorrosion of these files, and the results may also provide complementary data for a biopharmaceutical, which is still under development to assist in the removal of fractured endodontic files inside root channels.
Collapse
Affiliation(s)
- Fabiano Luiz Heggendorn
- School of Pharmacy, Federal University of Rio de Janeiro Pharmaceutical Laboratory Bioassays, Rio de Janeiro, RJ, Brazil
- Laboratory of Biocorrosion and Biodegradation, National Institute of Technology, Rio de Janeiro, RJ, Brazil
| | - Aline Guerra Manssour Fraga
- Laboratory of Organic Synthesis and Medical Chemistry, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dennis de Carvalho Ferreira
- Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, RJ, Brazil
- Veiga de Almeida University, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
10
|
Valdebenito-Rolack E, Ruiz-Tagle N, Abarzúa L, Aroca G, Urrutia H. Characterization of a hyperthermophilic sulphur-oxidizing biofilm produced by archaea isolated from a hot spring. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|