1
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
2
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Influence of Human Age on the Prebiotic Effect of Pectin-Derived Oligosaccharides Obtained from Apple Pomace. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aim of this study was to evaluate the prebiotic effect of pectin-derived oligosaccharides (POS) obtained from apple pomace on the growth and metabolism of microbiota from the human gastrointestinal tract as a function of the age of the host. The counts of major bacterial groups Bifidobacterium sp., lactobacilli, Clostridium sp., Bacteroides sp., Enterococcus sp. and Enterobacteria were assessed during long-term in vitro fermentation of mixed cultures in a prebiotic medium. Comparative assessment of bacterial diversity in the human fecal microbiota was performed relative to the age of the host, from childhood to old age, through younger years and middle age. The age group of the host was found to be an important factor that determined the prebiotic effect of POS, which was related to both the qualitative and quantitative composition of fecal microbiota and its metabolism. In contrast to the microbiota of elderly subjects, the child-derived intestinal microbiota underwent significantly different alterations in terms of the proportion and composition of lactic acid bacteria, leading to a more favorable pattern of short-chain fatty acids (SCFA) and lactic acid levels.
Collapse
|
4
|
Zhao X, Liu H, Zhou X, Chen X, Hu N, Zhang Y, Wang S. 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine Induced Colon Injury by Disrupting the Intestinal Bacterial Composition and Lipid Metabolic Pathways in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:437-446. [PMID: 33373210 DOI: 10.1021/acs.jafc.0c06588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), one of the most abundant heterocyclic amines, is a common carcinogen produced in thermally processed protein-rich foods. Studies have demonstrated that PhIP could induce colon tumors in rodents, leaving mechanisms uncovered. This study aims to investigate the mechanism of PhIP-induced colon injury in a rat model. The results of 16S rRNA gene sequencing and metabolomics showed that PhIP disrupted intestinal bacterial composition and affected the glycerophospholipid metabolism and linoleic acid metabolism. Simultaneously, the lipid metabolism function in the intestinal flora was inhibited by PhIP. Notably, transcriptomics revealed that PhIP remarkably inhibited the expression of gene sets associated with steroid hormone biosynthesis, fatty acid elongation, fatty acid degradation, and glycerolipid metabolism pathways in the colon. The results provide new perspectives to study the mechanism of PhIP-induced colon injury and theoretical bases for further understanding the toxicity of PhIP.
Collapse
Affiliation(s)
- Xiuli Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Hengchao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaofei Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaoxu Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Nan Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
5
|
Kumar M, Singh P, Murugesan S, Vetizou M, McCulloch J, Badger JH, Trinchieri G, Al Khodor S. Microbiome as an Immunological Modifier. Methods Mol Biol 2020; 2055:595-638. [PMID: 31502171 PMCID: PMC8276114 DOI: 10.1007/978-1-4939-9773-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Manoj Kumar
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Selvasankar Murugesan
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Marie Vetizou
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souhaila Al Khodor
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
6
|
Ferrer-Mayorga G, Larriba MJ, Crespo P, Muñoz A. Mechanisms of action of vitamin D in colon cancer. J Steroid Biochem Mol Biol 2019; 185:1-6. [PMID: 29981368 DOI: 10.1016/j.jsbmb.2018.07.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the neoplasia that is most frequently associated with vitamin D deficiency in epidemiological and observational studies in terms of incidence and mortality. Many mechanistic studies show that the active vitamin D metabolite (1α,25-dihydroxyvitamin D3 or calcitriol) inhibits proliferation and promotes epithelial differentiation of human colon carcinoma cell lines that express vitamin D receptor (VDR) via the regulation of a high number of genes. A key action underlining this effect is the multilevel inhibition of the Wnt/β-catenin signaling pathway, whose abnormal activation in colon epithelial cells initiates and promotes CRC. Recently, our group has shown that calcitriol modulates gene expression and inhibits protumoral properties of patient-derived colon cancer-associated fibroblasts (CAFs). Accordingly, high VDR expression in tumor stromal fibroblasts is associated with longer survival of CRC patients. Moreover, many types of immune cells express VDR and are regulated by calcitriol, which probably contributes to its action against CRC. Given the role attributed to the intestinal microbiota in CRC and the finding that it is altered by vitamin D deficiency, an indirect antitumoral effect of calcitriol is also plausible at this level. In summary, calcitriol has an array of potential protective effects against CRC by acting on carcinoma cells, CAFs, immune cells and probably also the gut microbiota.
Collapse
Affiliation(s)
- Gemma Ferrer-Mayorga
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, IdiPAZ and CIBERONC, Arturo Duperier, 4, E-28029 Madrid, Spain.
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, IdiPAZ and CIBERONC, Arturo Duperier, 4, E-28029 Madrid, Spain.
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria and CIBERONC, E-39011 Santander, Spain.
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, IdiPAZ and CIBERONC, Arturo Duperier, 4, E-28029 Madrid, Spain.
| |
Collapse
|
7
|
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and Cancer. Annu Rev Immunol 2017; 35:199-228. [PMID: 28142322 DOI: 10.1146/annurev-immunol-051116-052133] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ernesto Perez-Chanona
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
8
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|