1
|
Liu YS, Zhang C, Khoo BL, Hao P, Chua SL. Dual-species proteomics and targeted intervention of animal-pathogen interactions. J Adv Res 2024:S2090-1232(24)00383-7. [PMID: 39233003 DOI: 10.1016/j.jare.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Host-microbe interactions are important to human health and ecosystems globally, so elucidating the complex host-microbe interactions and associated protein expressions drives the need to develop sensitive and accurate biochemical techniques. Current proteomics techniques reveal information from the point of view of either the host or microbe, but do not provide data on the corresponding partner. Moreover, it remains challenging to simultaneously study host-microbe proteomes that reflect the direct competition between host and microbe. This raises the need to develop a dual-species proteomics method for host-microbe interactions. OBJECTIVES We aim to establish a forward + reverse Stable Isotope Labeling with Amino acids in Cell culture (SILAC) proteomics approach to simultaneously label and quantify newly-expressed proteins of host and microbe without physical isolation, for investigating mechanisms in direct host-microbe interactions. METHODS Using Caenorhabditis elegans-Pseudomonas aeruginosa infection model as proof-of-concept, we employed SILAC proteomics and molecular pathway analysis to characterize the differentially-expressed microbial and host proteins. We then used molecular docking and chemical characterization to identify chemical inhibitors that intercept host-microbe interactions and eliminate microbial infection. RESULTS Based on our proteomics results, we studied the iron competition between pathogen iron scavenger and host iron uptake protein, where P. aeruginosa upregulated pyoverdine synthesis protein (PvdA) (fold-change of 5.2313) and secreted pyoverdine, and C. elegans expressed ferritin (FTN-2) (fold-change of 3.4057). Targeted intervention of iron competition was achieved using Galangin, a ginger-derived phytochemical that inhibited pyoverdine production and biofilm formation in P. aeruginosa. The Galangin-ciprofloxacin combinatorial therapy could eliminate P. aeruginosa biofilms in a fish wound infection model, and enabled animal survival. CONCLUSION Our work provides a novel SILAC-based proteomics method that can simultaneously evaluate host and microbe proteomes, with future applications in higher host organisms and other microbial species. It also provides insights into the mechanisms dictating host-microbe interactions, offering novel strategies for anti-infective therapy.
Collapse
Affiliation(s)
- Yang Sylvia Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
| | - Chengqian Zhang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Special Administrative Region; City University of Hong Kong-Shenzhen Futian Research Institute, Shenzhen, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Valadbeigi H, Khoshnood S, Negahdari B, Maleki A, Mohammadinejat M, Haddadi MH. Mixed oral biofilms are controlled by the interspecies interactions of Fusobacterium nucleatum. Oral Dis 2024; 30:3582-3590. [PMID: 38009960 DOI: 10.1111/odi.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is an integral component of supra- and subgingival biofilms, especially more prevalent in subgingival areas during both periodontal health and disease. AIMS In this review, we explore the physical, metabolic, and genetic interactions that influence the role of F. nucleatum in the formation of mixed oral biofilms. The role of F. nucleatum in antibiotic resistance in oral biofilms was discussed and some therapeutic strategies were proposed. METHODS PubMed, Scopus, Google Scholar, and the Web of Science were extensively searched for English-language reports. RESULTS F. nucleatum-derived proteins such as RadD, Fap2, FomA, and CmpA are involved in direct interactions contributing to biofilm formation, while autoinducer-2 and putrescine are involved in metabolic interactions. Both groups are essential for the formation and persistence of oral biofilms. This study highlights the clinical relevance of targeted interactions of F. nucleatum in supra- and subgingival oral biofilms. CONCLUSIONS By focusing on these interactions, researchers and clinicians can develop more effective strategies to prevent biofilm-related disease and reduce the spread of antibiotic resistance. Further research in this area is warranted to explore the potential therapeutic interventions that can be derived from understanding the interactions of F. nucleatum in oral biofilm dynamics.
Collapse
Affiliation(s)
- Hassan Valadbeigi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Medya Mohammadinejat
- Department of Medicinal Chemistry, Faculty of Chemistry, North-Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
3
|
Wang M, Rousseau B, Qiu K, Huang G, Zhang Y, Su H, Le Bihan-Benjamin C, Khati I, Artz O, Foote MB, Cheng YY, Lee KH, Miao MZ, Sun Y, Bousquet PJ, Hilmi M, Dumas E, Hamy AS, Reyal F, Lin L, Armistead PM, Song W, Vargason A, Arthur JC, Liu Y, Guo J, Zhou X, Nguyen J, He Y, Ting JPY, Anselmo AC, Huang L. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. Nat Biotechnol 2024; 42:1263-1274. [PMID: 37749267 DOI: 10.1038/s41587-023-01957-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome-immunotherapy interventions.
Collapse
Affiliation(s)
- Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guannan Huang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Yu Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Hang Su
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Christine Le Bihan-Benjamin
- Health Data and Assessment Department, Data Science and Assessment Division, French National Cancer Institute, Boulogne-Billancourt, France
| | - Ines Khati
- Health Data and Assessment Department, Data Science and Assessment Division, French National Cancer Institute, Boulogne-Billancourt, France
| | - Oliver Artz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Michael Z Miao
- Curriculum in Oral and Craniofacial Biomedicine, Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Sun
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Philippe-Jean Bousquet
- Health Survey, Data Science and Assessment Division, French National Cancer Institute, Boulogne Billancourt, France
| | - Marc Hilmi
- GERCOR Group, Paris, France
- Medical Oncology Department, Curie Institute, Saint Cloud, France
| | - Elise Dumas
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- Department of Medical Oncology, Centre René Hughenin, Saint Cloud, France
| | - Fabien Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- Department of Surgery, Institut Jean Godinot, Reims, France
- Department of Surgical Oncology, Institut Curie, University of Paris, Paris, France
| | - Lin Lin
- BMTCT Program, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Paul M Armistead
- BMTCT Program, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Internal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Ava Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Division of Craniofacial and Surgical Care, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Prusty JS, Kumar A. LC-MS/MS profiling and analysis of Bacillus licheniformis extracellular proteins for antifungal potential against Candida albicans. J Proteomics 2024; 303:105228. [PMID: 38878881 DOI: 10.1016/j.jprot.2024.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Candida albicans, a significant human pathogenic fungus, employs hydrolytic proteases for host invasion. Conventional antifungal agents are reported with resistance issues from around the world. This study investigates the role of Bacillus licheniformis extracellular proteins (ECP) as effective antifungal peptides (AFPs). The aim was to identify and characterize the ECP of B. licheniformis through LC-MS/MS and bioinformatics analysis. LC-MS/MS analysis identified 326 proteins with 69 putative ECP, further analyzed in silico. Of these, 21 peptides exhibited antifungal properties revealed by classAMP tool and are predominantly anionic. Peptide-protein docking revealed interactions between AFPs like Peptide chain release factor 1 (Q65DV1_Seq1: SASEQLSDAK) and Putative carboxy peptidase (Q65IF0_Seq7: SDSSLEDQDFILESK) with C. albicans virulent SAP5 proteins (PDB ID 2QZX), forming hydrogen bonds and significant Pi-Pi interactions. The identification of B. licheniformis ECP is the novelty of the study that sheds light on their antifungal potential. The identified AFPs, particularly those interacting with bonafide pharmaceutical targets SAP5 of C. albicans represent promising avenues for the development of antifungal treatments with AFPs that could be the pursuit of a novel therapeutic strategy against C. albicans. SIGNIFICANCE OF STUDY: The purpose of this work was to carry out proteomic profiling of the secretome of B. licheniformis. Previously, the efficacy of Bacillus licheniformis extracellular proteins against Candida albicans was investigated and documented in a recently communicated manuscript, showcasing the antifungal activity of these proteins. In order to achieve high-throughput identification of ES (Excretory-secretory) proteins, the utilization of liquid chromatography tandem mass spectrometry (LC-MS) was utilized. There was a lack of comprehensive research on AFPs in B. licheniformis, nevertheless. The proteins secreted by B. licheniformis in liquid medium were initially discovered using liquid chromatography-tandem mass spectrometry (LC-MS) analysis and identification in order to immediately characterize the unidentified active metabolites in fermentation broth.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
5
|
Mohammed MMA, Bruun JA, Pettersen VK. Label-Free Quantitative Proteomics of Oral Microbial Communities. Methods Mol Biol 2024; 2820:155-164. [PMID: 38941022 DOI: 10.1007/978-1-0716-3910-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The oral cavity is a habitat for different microorganisms, of which bacteria are best described. Studying different bacterial taxa and their proteins is crucial to understanding their interactions with the host and other microbes. Also, for bacteria with virulence potential, identifying novel antigenic proteins is essential to finding candidates for the development of vaccines.Here, a workflow for gel-free and label-free protein analysis of oral bacterial species grown in vitro as a biofilm and a planktonic culture is described. Details on cultivation, protein extraction and digestion, peptide cleanup, LC-MS/MS run parameters, and subsequent bioinformatics analysis are included. Challenging steps in the workflow, such as growing different types of bacteria and selecting a suitable protein database, are also discussed. This protocol provides a valuable guide for metaproteomic experiments using multi-species models of oral bacteria.
Collapse
Affiliation(s)
- Marwan Mansoor Ali Mohammed
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Jack-Ansgar Bruun
- Proteomics and Metabolomics Core Facility (PRiME), Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Veronika Kuchařová Pettersen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for New Antibacterial Strategies, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Yamaguchi-Kuroda Y, Kikuchi Y, Kokubu E, Ishihara K. Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J Oral Microbiol 2023; 15:2165001. [PMID: 36687169 PMCID: PMC9848294 DOI: 10.1080/20002297.2023.2165001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Periodontitis is caused by a dysbiotic shift in the dental plaque microbiome. Fusobacterium nucleatum is involved in the colonization of Porphyromonas gingivalis, which plays a key role in dysbiosis, via coaggregation and synergy with this microorganism. Aim We investigated the effect of diffusible signaling molecules from P. gingivalis ATCC 33277 on F. nucleatum TDC 100 to elucidate the synergistic mechanisms involved in dysbiosis. Methods The two species were cocultured separated with an 0.4-µm membrane in tryptic soy broth, and F. nucleatum gene expression profiles in coculture with P. gingivalis were compared with those in monoculture. Results RNA sequencing revealed 139 genes differentially expressed between the coculture and monoculture. The expression of 52 genes was upregulated, including the coaggregation ligand-coding gene. Eighty-seven genes were downregulated. Gene Ontology analysis indicated enrichment for the glycogen synthesis pathway and a decrease in de novo synthesis of purine and pyrimidine. Conclusion These results indicate that diffusible signaling molecules from P. gingivalis induce metabolic changes in F. nucleatum, including an increase in polysaccharide synthesis and reduction in de novo synthesis of purine and pyrimidine. The metabolic changes may accelerate biofilm formation by F. nucleatum with P. gingivalis. Further, the alterations may represent potential therapeutic targets for preventing dysbiosis.
Collapse
Affiliation(s)
- Yukiko Yamaguchi-Kuroda
- Department of Endodontics, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan,CONTACT Kazuyuki Ishihara Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo101-0061, Japan
| |
Collapse
|
7
|
Tan HC, Cheung GSP, Chang JWW, Zhang C, Lee AHC. Enterococcus faecalis Shields Porphyromonas gingivalis in Dual-Species Biofilm in Oxic Condition. Microorganisms 2022; 10:microorganisms10091729. [PMID: 36144331 PMCID: PMC9505435 DOI: 10.3390/microorganisms10091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Aim: To develop a reproducible biofilm model consisting of Enterococcus faecalis (E. faecalis) and Porphyromonas gingivalis (P. gingivalis) and to evaluate the interaction between the two bacterial species. Methodology: E. faecalis and P. gingivalis were grown in mono-culture, sequential, and co-culture models for 96 h in a 96-well polystyrene microtiter plate under both aerobic and anaerobic conditions separately. The viability of the two bacterial species in the biofilms was quantified by polymerase chain reaction (qPCR). Biofilm thickness and protein contents were measured using confocal laser scanning microscopy (CLSM). Two-way analysis of variance (ANOVA) was performed to analyze cell viability and biofilm thickness among different culture models cultivated under either aerobic or anaerobic conditions. The level of significance was set at p < 0.05. Results: Different culture models tested did not show any significant difference between the viable cell counts of both E. faecalis and P. gingivalis cultivated under aerobic and anaerobic conditions (p > 0.05). Biofilm was significantly thicker (p < 0.05) in the co-culture models compared to the mono-culture and sequential models. Protein contents in the biofilms were more pronounced when both bacterial species were co-cultured under aerobic conditions. Conclusions: E. faecalis appeared to shield P. gingivalis and support its continued growth in oxic (aerobic) conditions. The co-culture model of E. faecalis and P. gingivalis produced a significantly thicker biofilm irrespective of the presence or absence of oxygen, while increased protein contents were only observed in the presence of oxygen.
Collapse
|
8
|
Naveed M, Makhdoom SI, Abbas G, Safdari M, Farhadi A, Habtemariam S, Shabbir MA, Jabeen K, Asif MF, Tehreem S. The Virulent Hypothetical Proteins: The Potential Drug Target Involved in Bacterial Pathogenesis. Mini Rev Med Chem 2022; 22:2608-2623. [DOI: 10.2174/1389557522666220413102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Hypothetical proteins (HPs) are non-predicted sequences that are identified only by open reading frames in sequenced genomes but their protein products remain uncharacterized by any experimental means. The genome of every species consists of HPs that are involved in various cellular processes and signaling pathways. Annotation of HPs is important as they play a key role in disease mechanisms, drug designing, vaccine production, antibiotic production, and host adaptation. In the case of bacteria, 25-50% of the genome comprises of HPs, which are involved in metabolic pathways and pathogenesis. The characterization of bacterial HPs helps to identify virulent proteins that are involved in pathogenesis. This can be done using in-silico studies, which provide sequence analogs, physiochemical properties, cellular or subcellular localization, structure and function validation, and protein-protein interactions. The most diverse types of virulent proteins are exotoxins, endotoxins, and adherent virulent factors that are encoded by virulent genes present on the chromosomal DNA of the bacteria. This review evaluates virulent HPs of pathogenic bacteria, such as Staphylococcus aureus, Chlamydia trachomatis, Fusobacterium nucleatum, and Yersinia pestis. The potential of these HPs as a drug target in bacteria-caused infectious diseases along with the mode of action and treatment approaches have been discussed.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Ghulam Abbas
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Farhadi
- Kavian Institute of Higher Education, Mashhad, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus-Science, Grenville Building (G102/G107), Central Avenue, Chatham-Maritime, Kent, ME4 4TB, UK
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Muhammad Farrukh Asif
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| |
Collapse
|
9
|
Muchova M, Balacco DL, Grant MM, Chapple ILC, Kuehne SA, Hirschfeld J. Fusobacterium nucleatum Subspecies Differ in Biofilm Forming Ability in vitro. FRONTIERS IN ORAL HEALTH 2022; 3:853618. [PMID: 35368312 PMCID: PMC8967363 DOI: 10.3389/froh.2022.853618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Development of dysbiosis in complex multispecies bacterial biofilms forming on teeth, known as dental plaque, is one of the factors causing periodontitis. Fusobacterium nucleatum (F. nucleatum) is recognised as a key microorganism in subgingival dental plaque, and is linked to periodontitis as well as colorectal cancer and systemic diseases. Five subspecies of F. nucleatum have been identified: animalis, fusiforme, nucleatum, polymorphum, and vincentii. Differential integration of subspecies into multispecies biofilm models has been reported, however, biofilm forming ability of individual F. nucleatum subspecies is largely unknown. The aim of this study was to determine the single-subspecies biofilm forming abilities of F. nucleatum ATCC type strains. Static single subspecies F. nucleatum biofilms were grown anaerobically for 3 days on untreated or surface-modified (sandblasting, artificial saliva, fibronectin, gelatin, or poly-L-lysine coating) plastic and glass coverslips. Biofilm mass was quantified using crystal violet (CV) staining. Biofilm architecture and thickness were analysed by scanning electron microscopy and confocal laser scanning microscopy. Bioinformatic analysis was performed to identify orthologues of known adhesion proteins in F. nucleatum subspecies. Surface type and treatment significantly influenced single-subspecies biofilm formation. Biofilm formation was overall highest on poly-L-lysine coated surfaces and sandblasted glass surfaces. Biofilm thickness and stability, as well as architecture, varied amongst the subspecies. Interestingly, F. nucleatum ssp. polymorphum did not form a detectable, continuous layer of biofilm on any of the tested substrates. Consistent with limited biofilm forming ability in vitro, F. nucleatum ssp. polymorphum showed the least conservation of the adhesion proteins CmpA and Fap2 in silico. Here, we show that biofilm formation by F. nucleatum in vitro is subspecies- and substrate-specific. Additionally, F. nucleatum ssp. polymorphum does not appear to form stable single-subspecies continuous layers of biofilm in vitro. Understanding the differences in F. nucleatum single-subspecies biofilm formation may shed light on multi-species biofilm formation mechanisms and may reveal new virulence factors as novel therapeutic targets for prevention and treatment of F. nucleatum-mediated infections and diseases.
Collapse
|
10
|
Ali Mohammed MM, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Label-free quantitative proteomic analysis of the oral bacteria Fusobacterium nucleatum and Porphyromonas gingivalis to identify protein features relevant in biofilm formation. Anaerobe 2021; 72:102449. [PMID: 34543761 DOI: 10.1016/j.anaerobe.2021.102449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.
Collapse
Affiliation(s)
| | | | - Audun H Nerland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Vidar Bakken
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
11
|
Shokeen B, Dinis MDB, Haghighi F, Tran NC, Lux R. Omics and interspecies interaction. Periodontol 2000 2020; 85:101-111. [PMID: 33226675 DOI: 10.1111/prd.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interspecies interactions are key determinants in biofilm behavior, ecology, and architecture. The cellular responses of microorganisms to each other at transcriptional, proteomic, and metabolomic levels ultimately determine the characteristics of biofilm and the corresponding implications for health and disease. Advances in omics technologies have revolutionized our understanding of microbial community composition and their activities as a whole. Large-scale analyses of the complex interaction between the many microbial species residing within a biofilm, however, are currently still hampered by technical and bioinformatics challenges. Thus, studies of interspecies interactions have largely focused on the transcriptional and proteomic changes that occur during the contact of a few prominent species, such as Porphyromonas gingivalis, Streptococcus mutans, Candida albicans, and a few others, with selected partner species. Expansion of available tools is necessary to grow the revealing, albeit limited, insight these studies have provided into a profound understanding of the nature of individual microbial responses to the presence of others. This will allow us to answer important questions including: Which intermicrobial interactions orchestrate the myriad of cooperative, synergistic, antagonistic, manipulative, and other types of relationships and activities in the complex biofilm environment, and what are the implications for oral health and disease?
Collapse
Affiliation(s)
- Bhumika Shokeen
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Marcia Dalila Botelho Dinis
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Farnoosh Haghighi
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nini Chaichanasakul Tran
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Renate Lux
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Wu SY, Wu-Hsieh BA. Neutrophil Extracellular Trap Killing Assay of Candida albicans. Bio Protoc 2020; 10:e3716. [PMID: 33659380 PMCID: PMC7842788 DOI: 10.21769/bioprotoc.3716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/02/2022] Open
Abstract
Fungal pathogen Candida albicans is one of the top leading causes of overall healthcare-associated bloodstream infections worldwide. Neutrophil is the major effector cell to clear C. albicans infection. Our study showed that mouse neutrophils utilize two independent mechanisms to kill C. albicans: one is CR3 downstream NADPH oxidase-dependent mechanism that kills opsonized C. albicans; the other one is dectin-2-mediated NADPH oxidase-independent neutrophil extracellular trap (NET) that kills unopsonized C. albicans. Neutrophil killing of opsonized C. albicans requires phagocytosing the organism and production of reactive oxygen species production (ROS). Most existing protocols that assay for neutrophil killing of C. albicans requires a washing step after allowing neutrophils to phagocytose the organism. By definition, NET kills organisms extracellularly. Therefore, it is important to skip the washing step and add an optimal ratio of neutrophils and C. albicans to the wells. To demonstrate the effect of NET, it is necessary to compare killing ability of neutrophils treated with micrococcal nuclease (MNase), an enzyme that digests NET, to that treated with heat-inactivated MNase. MNase is also applied to release NET-bound fungal elements for counting. This protocol can be applied to assay NET killing of other biofilm-forming organisms.
Collapse
Affiliation(s)
- Sheng-Yang Wu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Betty A. Wu-Hsieh
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
14
|
Bostanci N, Bao K, Greenwood D, Silbereisen A, Belibasakis GN. Periodontal disease: From the lenses of light microscopy to the specs of proteomics and next-generation sequencing. Adv Clin Chem 2019; 93:263-290. [PMID: 31655732 DOI: 10.1016/bs.acc.2019.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Periodontal disease entails the inflammatory destruction of the tooth supporting (periodontal) tissues as a result of polymicrobial colonization of the tooth surface in the form of biofilms. Extensive data collected over the past decades on this chronic disease demonstrate that its progression is infrequent and episodic, and the susceptibility to it can vary among individuals. Physical assessments of previously occurring damage to periodontal tissues remain the cornerstone of detection and diagnosis, whereas traditionally used diagnostic procedures do neither identify susceptible individuals nor distinguish between disease-active and disease-inactive periodontal sites. Thus, more sensitive and accurate "measurable biological indicators" of periodontal diseases are needed in order to place diagnosis (e.g., the presence or stage) and management of the disease on a more rational less empirical basis. Contemporary "omics" technologies may help unlock the path to this quest. High throughput nucleic acid sequencing technologies have enabled us to examine the taxonomic distribution of microbial communities in oral health and disease, whereas proteomic technologies allowed us to decipher the molecular state of the host in disease, as well as the interactive cross-talk of the host with the microbiome. The newly established field of metaproteomics has enabled the identification of the repertoire of proteins that oral microorganisms use to compete or co-operate with each other. Vast such data is derived from oral biological fluids, including gingival crevicular fluid and saliva, which is progressively completed and catalogued as the analytical technologies and bioinformatics tools progressively advance. This chapter covers the current "omics"-derived knowledge on the microbiome, the host and their "interactome" with regard to periodontal diseases, and addresses challenges and opportunities ahead.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Kai Bao
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Greenwood
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Romero-Lastra P, Sánchez MC, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Gene expression of Porphyromonas gingivalis ATCC 33277 when growing in an in vitro multispecies biofilm. PLoS One 2019; 14:e0221234. [PMID: 31437202 PMCID: PMC6706054 DOI: 10.1371/journal.pone.0221234] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Porphyromonas gingivalis, an oral microorganism residing in the subgingival biofilm, may exert diverse pathogenicity depending on the presence of specific virulence factors, but its gene expression has not been completely established. This investigation aims to compare the transcriptomic profile of this pathogen when growing within an in vitro multispecies biofilm or in a planktonic state. MATERIALS AND METHODS P. gingivalis ATCC 33277 was grown in anaerobiosis within multi-well culture plates at 37°C under two conditions: (a) planktonic samples (no hydroxyapatite discs) or (b) within a multispecies-biofilm containing Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans deposited on hydroxyapatite discs. Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) combined with Fluorescence In Situ Hybridization (FISH) were used to verify the formation of the biofilm and the presence of P. gingivalis. Total RNA was extracted from both the multispecies biofilm and planktonic samples, then purified and, with the use of a microarray, its differential gene expression was analyzed. A linear model was used for determining the differentially expressed genes using a filtering criterion of two-fold change (up or down) and a significance p-value of <0.05. Differential expression was confirmed by Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR). RESULTS SEM verified the development of the multispecies biofilm and FISH confirmed the incorporation of P. gingivalis. The microarray demonstrated that, when growing within the multispecies biofilm, 19.1% of P. gingivalis genes were significantly and differentially expressed (165 genes were up-regulated and 200 down-regulated), compared with planktonic growth. These genes were mainly involved in functions related to the oxidative stress, cell envelope, transposons and metabolism. The results of the microarray were confirmed by RT-qPCR. CONCLUSION Significant transcriptional changes occurred in P. gingivalis when growing in a multispecies biofilm compared to planktonic state.
Collapse
Affiliation(s)
- Patricia Romero-Lastra
- Laboratory of Dental Research, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - María C. Sánchez
- Laboratory of Dental Research, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Arancha Llama-Palacios
- Laboratory of Dental Research, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Elena Figuero
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- * E-mail:
| | - David Herrera
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front Microbiol 2019; 10:1716. [PMID: 31417514 PMCID: PMC6683768 DOI: 10.3389/fmicb.2019.01716] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fusobacteria are common obligately anaerobic Gram-negative bacteria of the oral cavity that may act as a bridge between early and late colonizing bacteria in dental plaque and have a role in oral and extra-oral infections. Fusobacterium nucleatum has a crucial role in oral biofilm structure and ecology, as revealed in experimental and clinical biofilm models. The aim of this study was to investigate the impact of various Fusobacterium species on in vitro biofilm formation and structure in three different oral biofilm models namely a supragingival, a supragingival “feeding”, and a subgingival biofilm model. The standard six-species supragingival and “feeding” biofilm models employed contained Actinomyces oris, Candida albicans, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Fusobacterium sp. The subgingival biofilm model contained 10 species (A. oris, Campylobacter rectus, F. nucleatum ssp. nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus anginosus, S. oralis, Tannerella forsythia, Treponema denticola, and V. dispar). Six different Fusobacterium species or subspecies, respectively, were tested namely F. nucleatum ssp. fusiforme, F. nucleatum ssp. nucleatum, F. nucleatum ssp. polymorphum, F. nucleatum ssp. vincentii, F. naviforme, and F. periodonticum). Biofilms were grown anaerobically on hydroxyapatite disks in 24-well culture dishes. After 64 h, biofilms were either harvested and quantified by culture analysis or proceeded to fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). All Fusobacterium species tested established well in the biofilms, with CFUs ranging from 1.4E+04 (F. nucleatum ssp. fusiforme) to 5.6E+06 (F. nucleatum ssp. nucleatum). The presence of specific Fusobacterium sp./ssp. induced a significant decrease in C. albicans levels in the supragingival model and in V. dispar levels in the “feeding” supragingival model. In the subgingival model, the counts of A. oris, S. oralis, P. intermedia, P. gingivalis, and C. rectus significantly decreased in the presence of specific Fusobacterium sp./ssp. Collectively, this study showed variations in the growing capacities of different fusobacteria within biofilms, affecting the growth of surrounding species and potentially the biofilm architecture. Hence, clinical or experimental studies need to differentiate between Fusobacterium sp./ssp., as their biological properties may well vary.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Manuela Flury
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
17
|
Suryaletha K, Narendrakumar L, John J, Radhakrishnan MP, George S, Thomas S. Decoding the proteomic changes involved in the biofilm formation of Enterococcus faecalis SK460 to elucidate potential biofilm determinants. BMC Microbiol 2019; 19:146. [PMID: 31253082 PMCID: PMC6599329 DOI: 10.1186/s12866-019-1527-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/20/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Enterococcus faecalis is a major clinically relevant nosocomial bacterial pathogen frequently isolated from polymicrobial infections. The biofilm forming ability of E. faecalis attributes a key role in its virulence and drug resistance. Biofilm cells are phenotypically and metabolically different from their planktonic counterparts and many aspects involved in E. faecalis biofilm formation are yet to be elucidated. The strain E. faecalis SK460 used in the present study is esp (Enterococcal surface protein) and fsr (two-component signal transduction system) negative non-gelatinase producing strong biofilm former isolated from a chronic diabetic foot ulcer patient. We executed a label-free quantitative proteomic approach to elucidate the differential protein expression pattern at planktonic and biofilm stages of SK460 to come up with potential determinants associated with Enterococcal biofilm formation. RESULTS The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of proteomic data revealed that biofilm cells expressed higher levels of proteins which are associated with glycolysis, amino acid biosynthesis, biosynthesis of secondary metabolites, microbial metabolism in diverse environments and stress response factors. Besides these basic survival pathways, LuxS-mediated quorum sensing, arginine metabolism, rhamnose biosynthesis, pheromone and adhesion associated proteins were found to be upregulated during the biofilm transit from planktonic stages. The selected subsets were validated by quantitative real-time PCR. In silico functional interaction analysis revealed that the genes involved in upregulated pathways pose a close molecular interaction thereby coordinating the regulatory network to thrive as a biofilm community. CONCLUSIONS The present study describes the first report of the quantitative proteome analysis of an esp and fsr negative non gelatinase producing E. faecalis. Proteome analysis evidenced enhanced expression of glycolytic pathways, stress response factors, LuxS quorum signaling system, rhamnopolysaccharide synthesis and pheromone associated proteins in biofilm phenotype. We also pointed out the relevance of LuxS quorum sensing and pheromone associated proteins in the biofilm development of E. faecalis which lacks the Fsr quorum signaling system. These validated biofilm determinants can act as potential inhibiting targets in Enterococcal infections.
Collapse
Affiliation(s)
- Karthika Suryaletha
- Cholera and Biofilm Research Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, (National Institute under the Department of Biotechnology, Government of India), Trivandrum, Kerala, 695014, India
| | - Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, (National Institute under the Department of Biotechnology, Government of India), Trivandrum, Kerala, 695014, India
| | - Joby John
- Department of Surgery, Government Medical College Hospital, Trivandrum, Kerala, 695011, India
| | - Megha Periyappilly Radhakrishnan
- Cholera and Biofilm Research Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, (National Institute under the Department of Biotechnology, Government of India), Trivandrum, Kerala, 695014, India
| | - Sanil George
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, (National Institute under the Department of Biotechnology, Government of India), Trivandrum, Kerala, 695014, India.
| |
Collapse
|
18
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
19
|
Ramirez-Mora T, Retana-Lobo C, Valle-Bourrouet G. Biochemical characterization of extracellular polymeric substances from endodontic biofilms. PLoS One 2018; 13:e0204081. [PMID: 30457998 PMCID: PMC6245677 DOI: 10.1371/journal.pone.0204081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
Apical periodontitis is frequently associated with the presence of bacteria biofilm, which has an indisputable impact on the prognosis of endodontic therapy due to the high resistance to adverse environmental conditions, chemicals, and antibiotic therapy that characterize bacteria within biofilm. The biofilm matrix acts as a protective shield over the encased microorganisms. The aim of this investigation was to identify the main biochemical components of biofilm matrix from endodontic mono- and dual-species biofilms. Enterococcus faecalis and Actinomyces naeslundii were cultured as mono- and dual-species biofilms for 14 days. Crude extracellular polymeric substances (EPSs) from biofilm matrices were extracted using chemical and physical methods. High-performance liquid chromatography, gas chromatography, and mass spectrometry were used to determine the carbohydrate, protein, and fatty acid components. Chemical analysis of the biofilm matrices revealed that they were mainly composed of stachyose, maltose, and mannose carbohydrates. The protein profile in all biofilm samples showed abundant oxidoreductases and chaperone proteins and some virulence- associated proteins mainly located in the membrane surface. High percentages of saturated and monounsaturated fatty acids were identified in all biofilm matrices, with a major prevalence of palmitic, stearic, and oleic acids. Based on the results, it was possible to obtain for the first time a general overview of the biochemical profile of endodontic biofilm matrices.
Collapse
Affiliation(s)
- Tatiana Ramirez-Mora
- Section of Endodontics, Restorative Department, Faculty of Dentistry, University of Costa Rica, Montes de Oca, San José, Costa Rica
- * E-mail:
| | - Cristina Retana-Lobo
- Section of Endodontics, Restorative Department, Faculty of Dentistry, University of Costa Rica, Montes de Oca, San José, Costa Rica
| | - Grettel Valle-Bourrouet
- Inorganic Chemistry Department, Chemistry Faculty, University of Costa Rica, Montes de Oca, San José, Costa Rica
| |
Collapse
|
20
|
Liu D, Yang Z, Chen Y, Zhuang W, Niu H, Wu J, Ying H. Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:315. [PMID: 30479660 PMCID: PMC6245871 DOI: 10.1186/s13068-018-1316-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Biofilms are cell communities wherein cells are embedded in a self-produced extracellular polymeric substances (EPS). The biofilm of Clostridium acetobutylicum confers the cells superior phenotypes and has been extensively exploited to produce a variety of liquid biofuels and bulk chemicals. However, little has been known about the physiology of C. acetobutylicum in biofilm as well as the composition and biosynthesis of the EPS. Thus, this study is focused on revealing the cell physiology and EPS composition of C. acetobutylicum biofilm. RESULTS Here, we revealed a novel lifestyle of C. acetobutylicum in biofilm: elimination of sporulation and vegetative growth. Extracellular polymeric substances and wire-like structures were also observed in the biofilm. Furthermore, for the first time, the biofilm polysaccharides and proteins were isolated and characterized. The biofilm contained three heteropolysaccharides. The major fraction consisted of predominantly glucose, mannose and aminoglucose. Also, a great variety of proteins including many non-classically secreted proteins moonlighting as adhesins were found considerably present in the biofilm, with GroEL, a S-layer protein and rubrerythrin being the most abundant ones. CONCLUSIONS This study evidenced that vegetative C. acetobutylicum cells rather than commonly assumed spore-forming cells were essentially the solvent-forming cells. The abundant non-classically secreted moonlighting proteins might be important for the biofilm formation. This study provides the first physiological and molecular insights into C. acetobutylicum biofilm which should be valuable for understanding and development of the biofilm-based processes.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Zhengjiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| |
Collapse
|