1
|
Goh S, Inal J. Membrane Vesicles of Clostridioides difficile and Other Clostridial Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:315-327. [PMID: 38175481 DOI: 10.1007/978-3-031-42108-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Membrane vesicles are secreted by growing bacterial cells and are important components of the bacterial secretome, with a role in delivering effector molecules that ultimately enable bacterial survival. Membrane vesicles of Clostridioides difficile likely contribute to pathogenicity and is a new area of research on which there is currently very limited information. This chapter summarizes the current knowledge on membrane vesicle formation, content, methods of characterization and functions in Clostridia and model Gram-positive species.
Collapse
Affiliation(s)
- Shan Goh
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Jameel Inal
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
2
|
Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic Resistances of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:169-198. [PMID: 38175476 DOI: 10.1007/978-3-031-42108-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are a matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances, and most of the epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways or biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Mastrantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Uruén C, García C, Fraile L, Tommassen J, Arenas J. How Streptococcus suis escapes antibiotic treatments. Vet Res 2022; 53:91. [DOI: 10.1186/s13567-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractStreptococcus suis is a zoonotic agent that causes sepsis and meningitis in pigs and humans. S. suis infections are responsible for large economic losses in pig production. The lack of effective vaccines to prevent the disease has promoted the extensive use of antibiotics worldwide. This has been followed by the emergence of resistance against different classes of antibiotics. The rates of resistance to tetracyclines, lincosamides, and macrolides are extremely high, and resistance has spread worldwide. The genetic origin of S. suis resistance is multiple and includes the production of target-modifying and antibiotic-inactivating enzymes and mutations in antibiotic targets. S. suis genomes contain traits of horizontal gene transfer. Many mobile genetic elements carry a variety of genes that confer resistance to antibiotics as well as genes for autonomous DNA transfer and, thus, S. suis can rapidly acquire multiresistance. In addition, S. suis forms microcolonies on host tissues, which are associations of microorganisms that generate tolerance to antibiotics through a variety of mechanisms and favor the exchange of genetic material. Thus, alternatives to currently used antibiotics are highly demanded. A deep understanding of the mechanisms by which S. suis becomes resistant or tolerant to antibiotics may help to develop novel molecules or combinations of antimicrobials to fight these infections. Meanwhile, phage therapy and vaccination are promising alternative strategies, which could alleviate disease pressure and, thereby, antibiotic use.
Collapse
|
4
|
Tran TT, Gomez Villegas S, Aitken SL, Butler-Wu SM, Soriano A, Werth BJ, Munita JM. New Perspectives on Antimicrobial Agents: Long-Acting Lipoglycopeptides. Antimicrob Agents Chemother 2022; 66:e0261420. [PMID: 35475634 PMCID: PMC9211417 DOI: 10.1128/aac.02614-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The long-acting lipoglycopeptides (LGPs) dalbavancin and oritavancin are semisynthetic antimicrobials with broad and potent activity against Gram-positive bacterial pathogens. While they are approved by the Food and Drug Administration for acute bacterial skin and soft tissue infections, their pharmacological properties suggest a potential role of these agents for the treatment of deep-seated and severe infections, such as bloodstream and bone and joint infections. The use of these antimicrobials is particularly appealing when prolonged therapy, early discharge, and avoidance of long-term intravascular catheter access are desirable or when multidrug-resistant bacteria are suspected. This review describes the current evidence for the use of oritavancin and dalbavancin in the treatment of invasive infections, as well as the hurdles that are preventing their optimal use. Moreover, this review discusses the current knowledge gaps that need to be filled to understand the potential role of LGPs in highly needed clinical scenarios and the ongoing clinical studies that aim to address these voids in the upcoming years.
Collapse
Affiliation(s)
- Truc T. Tran
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
| | - Sara Gomez Villegas
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
| | - Samuel L. Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Susan M. Butler-Wu
- Department of Pathology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Brian J. Werth
- University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Jose M. Munita
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics & Resistant Microbes (GeRM) Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
5
|
Alves F, Nunes A, Castro R, Sequeira A, Moreira O, Matias R, Rodrigues JC, Silveira L, Gomes JP, Oleastro M. Assessment of the Transmission Dynamics of Clostridioides difficile in a Farm Environment Reveals the Presence of a New Toxigenic Strain Connected to Swine Production. Front Microbiol 2022; 13:858310. [PMID: 35495679 PMCID: PMC9050547 DOI: 10.3389/fmicb.2022.858310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 01/05/2023] Open
Abstract
The recent increase in community-acquired Clostridioides difficile infections discloses the shift in this bacterium epidemiology. This study aimed at establishing a transmission network involving One Health components, as well as assessing the zoonotic potential and genomic features of dominant clones. Samples were collected from different compartments of animal, human and environmental origin, from an animal production unit. C. difficile isolates were characterized for toxigenic profile by multiplex-PCR, while genetic diversity was evaluated by PCR-ribotyping and whole genome-based analysis. The overall C. difficile prevalence was 37.2% (70/188), and included samples from environmental (58.3%, 35/60) and animal (31.5%, 35/111) compartments; human samples (n = 17) taken from healthy workers were negative. A predominant clone from RT033 was found in almost 90% of the positive samples, including samples from all compartments connected to the pig production unit, with core-genome single nucleotide variant (SNV)-based Analysis supporting a clonal transmission between them (mean distance of 0.1 ± 0.1 core-SNVs). The isolates from this clone (herein designated PT RT033) were positive for all C. difficile toxin genes (tcdA, tcdB, cdtA/cdtB). The phyloGenetic positioning of this clone was clearly distinct from the classical RT033 cluster, suggesting a different evolutionary route. This new clone shares genomic features with several RTs from the clade 5 Sequence Type (ST) 11, including a complete pathogenicity locus (PaLoc) that is more similar to the one found in toxigenic strains and contrasting to the less virulent classical RT033 (tcdA-, tcdB-, cdtA + /cdtB +). The presence of a tcdA gene truncated into two ORFs, not previously described, requires further evaluation concerning toxin functionality. We hypothesize that the unique combination of genetic elements found in the PT RT033 clone may contribute to host tropism and environmental dissemination and maintenance. This study constitutes the first report of a toxigenic RT033 clone and adds to the overall knowledge on Clade 5 sequence type 11, considered the C. difficile evolutionary lineage with the highest zoonotic potential. The presence of this clone in all compartments associated with the pig production unit suggests a transmission chain involving these animals and contributes to unveil the role played by animal and environmental reservoirs in this pathogen epidemiology.
Collapse
Affiliation(s)
- Frederico Alves
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - Alexandra Nunes
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
- CBIOS – Lusófona University Research Centre for Biosciences & Health Technologies, Lisbon, Portugal
| | - Rita Castro
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - António Sequeira
- National Zootechnical Station, National Institute for Agrarian and Veterinarian Research, Santarém, Portugal
| | - Olga Moreira
- National Zootechnical Station, National Institute for Agrarian and Veterinarian Research, Santarém, Portugal
| | - Rui Matias
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Carlos Rodrigues
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - Leonor Silveira
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Mónica Oleastro
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| |
Collapse
|
6
|
Genetic Mechanisms of Vancomycin Resistance in Clostridioides difficile: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11020258. [PMID: 35203860 PMCID: PMC8868222 DOI: 10.3390/antibiotics11020258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial resistance to treatments for Clostridioides difficile infection (CDI) poses a significant threat to global health. C. difficile is widely thought to be susceptible to oral vancomycin, which is increasingly the mainstay of CDI treatment. However, clinical labs do not conduct C. difficile susceptibility testing, presenting a challenge to detecting the emergence and impact of resistance. In this systematic review, we describe gene determinants and associated clinical and laboratory mechanisms of vancomycin resistance in C. difficile, including drug-binding site alterations, efflux pumps, RNA polymerase mutations, and biofilm formation. Additional research is needed to further characterize these mechanisms and understand their clinical impact.
Collapse
|
7
|
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics. Int J Mol Sci 2021; 23:ijms23010097. [PMID: 35008521 PMCID: PMC8744867 DOI: 10.3390/ijms23010097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Teicoplanin is a natural lipoglycopeptide antibiotic with a similar activity spectrum as vancomycin; however, it has with the added benefit to the patient of low cytotoxicity. Both teicoplanin and vancomycin antibiotics are actively used in medical practice in the prophylaxis and treatment of severe life-threatening infections caused by gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, Enterococcus faecium and Clostridium difficile. The expression of vancomycin Z (vanZ), encoded either in the vancomycin A (vanA) glycopeptide antibiotic resistance gene cluster or in the genomes of E. faecium, as well as Streptococcus pneumoniae and C. difficile, was shown to specifically compromise the antibiotic efficiency through the inhibition of teicoplanin binding to the bacterial surface. However, the exact mechanisms of this action and protein structure remain unknown. In this study, the three-dimensional structure of VanZ from E. faecium EnGen0191 was predicted by using the I-TASSER web server. Based on the VanZ structure, a benzimidazole based ligand was predicted to bind to the VanZ by molecular docking. Importantly, this new ligand, named G3K, was further confirmed to specifically inhibit VanZ-mediated resistance to teicoplanin in vivo.
Collapse
|
8
|
O’Grady K, Knight DR, Riley TV. Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2021; 40:2459-2478. [DOI: 10.1007/s10096-021-04311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
|
9
|
Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021; 7:1236-1247. [PMID: 33739823 PMCID: PMC8130196 DOI: 10.1021/acsinfecdis.0c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastrointestinal, spore-forming pathogen Clostridioides difficile. Despite their highly hydrophilic nature, these homopolymers showed efficacy against both the vegetative and spore forms of the bacterium, including an impact on C. difficile spore germination. The polymer designated P34 demonstrated the greatest efficacy against C. difficile strains, along with low propensities to lyse human red blood cells or intestinal epithelial cells. To gain insight into the mechanism of P34 action, we evaluated several cell-surface mutant strains of C. difficile to determine the impacts on growth, viability, and cell morphology. The results suggest that P34 interacts with the cell wall, resulting in severe cell bending and death in a concentration-dependent manner. The unexpected finding that nylon-3 polymers composed entirely of cationic subunits display significant activities toward C. difficile should expand the range of other polymers considered for antibacterial applications.
Collapse
Affiliation(s)
- Joshua B. Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Lei Liu
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi Biok
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Myung-ryul Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sean Huth
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Brindar K. Sandhu
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Samuel H. Gellman
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
10
|
Roxas BAP, Roxas JL, Claus-Walker R, Harishankar A, Mansoor A, Anwar F, Jillella S, Williams A, Lindsey J, Elliott SP, Shehab KW, Viswanathan VK, Vedantam G. Phylogenomic analysis of Clostridioides difficile ribotype 106 strains reveals novel genetic islands and emergent phenotypes. Sci Rep 2020; 10:22135. [PMID: 33335199 PMCID: PMC7747571 DOI: 10.1038/s41598-020-79123-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.
Collapse
Affiliation(s)
- Bryan Angelo P Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Shobitha Jillella
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Alison Williams
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Sean P Elliott
- Department of Pediatrics, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kareem W Shehab
- Department of Pediatrics, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA.,Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA. .,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA. .,Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, USA. .,Southern Arizona VA Health Care System, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E Lowell St, Bldg. 90, Room 227, Tucson, AZ, 85721, USA.
| |
Collapse
|
11
|
Bermejo Boixareu C, Tutor-Ureta P, Ramos Martínez A. [Updated review of Clostridium difficile infection in elderly]. Rev Esp Geriatr Gerontol 2020; 55:225-235. [PMID: 32423602 DOI: 10.1016/j.regg.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Clostridium difficile infection is the most common cause of health care-associated diarrhoea, and its incidence increases with age. Clinical challenges, risk of resistance to treatment, risk of recurrence, and treatment responses are different in elderly. The aim of this review is to discuss the updated epidemiology, pathophysiology, diagnosis, and therapeutic management of C. difficile infection in elderly with the available data.
Collapse
Affiliation(s)
| | - Pablo Tutor-Ureta
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, España
| | - Antonio Ramos Martínez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, España
| |
Collapse
|
12
|
Vimberg V, Zieglerová L, Buriánková K, Branny P, Balíková Novotná G. VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells. Front Microbiol 2020; 11:566. [PMID: 32318043 PMCID: PMC7146870 DOI: 10.3389/fmicb.2020.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
vanZ, a member of the VanA glycopeptide resistance gene cluster, confers resistance to lipoglycopeptide antibiotics independent of cell wall precursor modification by the vanHAX genes. Orthologs of vanZ are present in the genomes of many clinically relevant bacteria, including Enterococcus faecium and Streptococcus pneumoniae; however, vanZ genes are absent in Staphylococcus aureus. Here, we show that the expression of enterococcal vanZ paralogs in S. aureus increases the minimal inhibitory concentrations of lipoglycopeptide antibiotics teicoplanin, dalbavancin, oritavancin and new teicoplanin pseudoaglycone derivatives. The reduction in the binding of fluorescently labeled teicoplanin to the cells suggests the mechanism of VanZ-mediated resistance. In addition, using a genomic vanZ gene knockout mutant of S. pneumoniae, we have shown that the ability of VanZ proteins to compromise the activity of lipoglycopeptide antibiotics by reducing their binding is a more general feature of VanZ-superfamily proteins.
Collapse
Affiliation(s)
- Vladimir Vimberg
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Leona Zieglerová
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Karolína Buriánková
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Branny
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gabriela Balíková Novotná
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
13
|
Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci 2020; 29:654-669. [PMID: 31899563 DOI: 10.1002/pro.3819] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Vancomycin and related glycopeptides are drugs of last resort for the treatment of severe infections caused by Gram-positive bacteria such as Enterococcus species, Staphylococcus aureus, and Clostridium difficile. Vancomycin was long considered immune to resistance due to its bactericidal activity based on binding to the bacterial cell envelope rather than to a protein target as is the case for most antibiotics. However, two types of complex resistance mechanisms, each comprised of a multi-enzyme pathway, emerged and are now widely disseminated in pathogenic species, thus threatening the clinical efficiency of vancomycin. Vancomycin forms an intricate network of hydrogen bonds with the d-Ala-d-Ala region of Lipid II, interfering with the peptidoglycan layer maturation process. Resistance to vancomycin involves degradation of this natural precursor and its replacement with d-Ala-d-lac or d-Ala-d-Ser alternatives to which vancomycin has low affinity. Through extensive research over 30 years after the initial discovery of vancomycin resistance, remarkable progress has been made in molecular understanding of the enzymatic cascades responsible. Progress has been driven by structural studies of the key components of the resistance mechanisms which provided important molecular understanding such as, for example, the ability of this cascade to discriminate between vancomycin sensitive and resistant peptidoglycan precursors. Important structural insights have been also made into the molecular evolution of vancomycin resistance enzymes. Altogether this molecular data can accelerate inhibitor discovery and optimization efforts to reverse vancomycin resistance. Here, we overview our current understanding of this complex resistance mechanism with a focus on the structural and molecular aspects.
Collapse
Affiliation(s)
- Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID)
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID).,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Regulation and Anaerobic Function of the Clostridioides difficile β-Lactamase. Antimicrob Agents Chemother 2019; 64:AAC.01496-19. [PMID: 31611350 DOI: 10.1128/aac.01496-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile causes severe antibiotic-associated diarrhea and colitis. C. difficile is an anaerobic, Gram-positive sporeformer that is highly resistant to β-lactams, the most commonly prescribed antibiotics. The resistance of C. difficile to β-lactam antibiotics allows the pathogen to replicate and cause disease in antibiotic-treated patients. However, the mechanisms of β-lactam resistance in C. difficile are not fully understood. Our data reinforce prior evidence that C. difficile produces a β-lactamase, which is a common β-lactam resistance mechanism found in other bacterial species. Here, we characterize the C. difficile bla operon that encodes a lipoprotein of unknown function and a β-lactamase that was greatly induced in response to several classes of β-lactam antibiotics. An in-frame deletion of the operon abolished β-lactamase activity in C. difficile strain 630Δerm and resulted in decreased resistance to the β-lactam ampicillin. We found that the activity of this β-lactamase, BlaCDD, is dependent upon the redox state of the enzyme. In addition, we observed that transport of BlaCDD out of the cytosol and to the cell surface is facilitated by an N-terminal signal sequence. Our data demonstrate that a cotranscribed lipoprotein, BlaX, aids in BlaCDD activity. Further, we identified a conserved BlaRI regulatory system and demonstrated via insertional disruption that BlaRI controls transcription of the blaXCDD genes in response to β-lactams. These results provide support for the function of a β-lactamase in C. difficile antibiotic resistance and reveal the unique roles of a coregulated lipoprotein and reducing environment in C. difficile β-lactamase activity.
Collapse
|