1
|
Schettini N, Pacetti L, Corazza M, Borghi A. The Role of OX40-OX40L Axis in the Pathogenesis of Atopic Dermatitis. Dermatitis 2025; 36:28-36. [PMID: 38700255 DOI: 10.1089/derm.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
OX40 is a co-stimulatory immune checkpoint molecule that promotes the activation and the effector function of T lymphocytes through interaction with its ligand (OX40L) on antigen-presenting cells. OX40-OX40L axis plays a crucial role in Th1 and Th2 cell expansion, particularly during the late phases or long-lasting response. Atopic dermatitis is characterized by an immune dysregulation of Th2 activity and by an overproduction of proinflammatory cytokines such as interleukin (IL)-4 and IL-13. Other molecules involved in its pathogenesis include thymic stromal lymphopoietin, IL-33, and IL-25, which contribute to the promotion of OX40L expression on dendritic cells. Lesional skin in atopic dermatitis exhibits a higher level of OX40L+-presenting cells compared with other dermatologic diseases or normal skin. Recent clinical trials using antagonizing anti-OX40 or anti-OX40L antibodies have shown symptom improvement and cutaneous manifestation alleviation in patients with atopic dermatitis. These findings suggest the relevance of the OX40-OX40L axis in atopic dermatitis pathogenesis.
Collapse
Affiliation(s)
- Natale Schettini
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Lucrezia Pacetti
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Corazza
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Borghi
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Kordulewska N, Topa J, Cieślińska A, Jarmołowska B. Osthole Regulates Secretion of Pro-Inflammatory Cytokines and Expression of TLR2 and NF-κB in Normal Human Keratinocytes and Fibroblasts. J Inflamm Res 2022; 15:1501-1519. [PMID: 35261546 PMCID: PMC8898189 DOI: 10.2147/jir.s349216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
- Correspondence: Natalia Kordulewska, Tel + 48 89 523 37 63, Fax + 48 89 535 20 15, Email
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
3
|
Furue M, Furue M. OX40L-OX40 Signaling in Atopic Dermatitis. J Clin Med 2021; 10:jcm10122578. [PMID: 34208041 PMCID: PMC8230615 DOI: 10.3390/jcm10122578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
OX40 is one of the co-stimulatory molecules expressed on T cells, and it is engaged by OX40L, primarily expressed on professional antigen-presenting cells such as dendritic cells. The OX40L-OX40 axis is involved in the sustained activation and expansion of effector T and effector memory T cells, but it is not active in naïve and resting memory T cells. Ligation of OX40 by OX40L accelerates both T helper 1 (Th1) and T helper 2 (Th2) effector cell differentiation. Recent therapeutic success in clinical trials highlights the importance of the OX40L-OX40 axis as a promising target for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-90-2518-9125
| | - Mihoko Furue
- 1-19-20 Momochi, Sawara-ku, Fukuoka 814-0006, Japan;
| |
Collapse
|
4
|
Guttman-Yassky E, Diaz A, Pavel AB, Fernandes M, Lefferdink R, Erickson T, Canter T, Rangel S, Peng X, Li R, Estrada Y, Xu H, Krueger JG, Paller AS. Use of Tape Strips to Detect Immune and Barrier Abnormalities in the Skin of Children With Early-Onset Atopic Dermatitis. JAMA Dermatol 2021; 155:1358-1370. [PMID: 31596431 DOI: 10.1001/jamadermatol.2019.2983] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Importance Molecular profiling of skin biopsies is the criterion standard for evaluating the cutaneous atopic dermatitis (AD) phenotype. However, skin biopsies are not always feasible in children. A reproducible minimally invasive approach that can track cutaneous disease in pediatric longitudinal studies or clinical trials is lacking. Objective To assess a minimally invasive approach using tape strips to identify skin biomarkers that may serve as a surrogate to biomarkers identified using whole-tissue biopsies. Design, Setting, and Participants This cross-sectional study of 51 children younger than 5 years recruited children with moderate to severe AD and children without AD from the dermatology outpatient clinics at a children's hospital. Sixteen tape strips were serially collected from the nonlesional and lesional skin of 21 children who had AD and were less than 6 months from disease initiation and from the normal skin of 30 children who did not have AD between January 22, 2016, and April 20, 2018. Main Outcomes and Measures Gene and protein expression were evaluated using quantitative real-time polymerase chain reaction and immunohistochemistry. Results A total of 51 children younger than 5 years were included in the study; 21 children had moderate to severe AD with less than 6 months of disease duration, and 30 children did not have AD. Of the 21 children with AD, the mean (SD) age was 1.7 (1.7) years, and most were male (15 [71.4%] and white (15 [71.4%]). Of the 30 children without AD, the mean (SD) age was 1.8 (2.0) years, and most were female (20 [66.7%]) and white (22 [73.3%]). Seventy-seven of 79 evaluated immune and barrier gene products were detected (gene detection rate, 97%) in 70 of 71 tape strips (sample detection rate, 99%), with 53 of 79 markers differentiating between children with lesional and/or nonlesional AD from children without AD. Many cellular markers of T cells (CD3), AD-related dendritic cells (Fc ε RI and OX40 ligand receptors), and key inflammatory (matrix metallopeptidase 12), innate (interleukin 8 [IL-8] and IL-6), helper T cell 2 (TH2; IL-4, IL-13, and chemokines CCL17 and CCL26), and TH17/TH22 (IL-19, IL-36G, and S100A proteins) genes were significantly increased in lesional and nonlesional AD compared with tape strips from normal skin. For example, IL-4 mean (SE) for lesional was -15.2 (0.91) and normal was -19.5 (0.48); P < .001. Parallel decreases occurred in epidermal barrier gene products (FLG, CLDN23, and FA2H) and negative immune regulators (IL-34 and IL-37). For example, the decrease for FLG lesional was mean (SE) -2.9 (0.42) and for normal was 2.2 (0.45); P < .001. Associations were found between disease severity or transepidermal water loss and TH2 (IL-33 and IL-4R) and TH17/TH22 (IL-36G and S100As) products in lesional and nonlesional AD skin (evaluated using the SCORing Atopic Dermatitis, Eczema Area and Severity Index, and Pruritus Atopic Dermatitis Quickscore tools). Conclusions and Relevance In this study, tape strips provide a minimally invasive alternative for serially evaluating AD-associated cutaneous biomarkers and may prove useful for tracking pediatric AD therapeutic response and predicting future course and comorbidities.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Aisleen Diaz
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York.,School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Ana B Pavel
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Marie Fernandes
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Rachel Lefferdink
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Taylor Erickson
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Talia Canter
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephanie Rangel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiangyu Peng
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Randall Li
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Yeriel Estrada
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Hui Xu
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Amy S Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
5
|
Tubau C, Puig L. Therapeutic targeting of the IL-13 pathway in skin inflammation. Expert Rev Clin Immunol 2020; 17:15-25. [PMID: 33275064 DOI: 10.1080/1744666x.2020.1858802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Atopic dermatitis (AD) is a heterogeneous, chronic, inflammatory skin disease with a non-negligible prevalence at present. Its pathogenesis is complex, but mainly characterized by constitutive T helper type 2 (Th2)-cell activation. Systemic therapies for moderate-to-severe AD can be associated with adverse events that encumber their satisfactory long-term use. Several drugs targeting relevant molecules in the immunopathogenesis of AD have been approved or are under clinical development for the treatment of moderate to severe AD. To elaborate this review, literature searches were performed in PubMed on 29 August 2020.Areas covered: This narrative literature review is focused on the pivotal role of IL-13 in the immunopathogenesis of AD and other skin diseases.Expert opinion: Dupilumab has demonstrated the central role of IL-13 and IL-4 in the pathogenesis of AD, asthma, and other diseases in the atopic spectrum. In addition, phase III randomized clinical trials (RCTs) evaluating specific blockade of IL-13 with tralokinumab for treatment of AD also demonstrated favorable results, and phase III RCT evaluating lebrikizumab are ongoing. The role of IL-13 in other skin diseases should be further investigated.
Collapse
Affiliation(s)
- Carla Tubau
- Dermatology Department, Hospital De La Santa Creu I Sant Pau, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Lluís Puig
- Dermatology Department, Hospital De La Santa Creu I Sant Pau, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Furue M. Regulation of Skin Barrier Function via Competition between AHR Axis versus IL-13/IL-4‒JAK‒STAT6/STAT3 Axis: Pathogenic and Therapeutic Implications in Atopic Dermatitis. J Clin Med 2020; 9:E3741. [PMID: 33233866 PMCID: PMC7700181 DOI: 10.3390/jcm9113741] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is characterized by skin inflammation, barrier dysfunction, and chronic pruritus. As the anti-interleukin-4 (IL-4) receptor α antibody dupilumab improves all three cardinal features of AD, the type 2 cytokines IL-4 and especially IL-13 have been indicated to have pathogenic significance in AD. Accumulating evidence has shown that the skin barrier function is regulated via competition between the aryl hydrocarbon receptor (AHR) axis (up-regulation of barrier) and the IL-13/IL-4‒JAK‒STAT6/STAT3 axis (down-regulation of barrier). This latter axis also induces oxidative stress, which exacerbates inflammation. Conventional and recently developed agents for treating AD such as steroid, calcineurin inhibitors, cyclosporine, dupilumab, and JAK inhibitors inhibit the IL-13/IL-4‒JAK‒STAT6/STAT3 axis, while older remedies such as coal tar and glyteer are antioxidative AHR agonists. In this article, I summarize the pathogenic and therapeutic implications of the IL-13/IL-4‒JAK‒STAT6/STAT3 axis and the AHR axis in AD.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Nakahara T, Kido‐Nakahara M, Tsuji G, Furue M. Basics and recent advances in the pathophysiology of atopic dermatitis. J Dermatol 2020; 48:130-139. [DOI: 10.1111/1346-8138.15664] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Takeshi Nakahara
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University FukuokaJapan
| | - Makiko Kido‐Nakahara
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
| | - Gaku Tsuji
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| | - Masutaka Furue
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University FukuokaJapan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| |
Collapse
|
8
|
Elevated Levels of Activated and Pathogenic Eosinophils Characterize Moderate-Severe House Dust Mite Allergic Rhinitis. J Immunol Res 2020; 2020:8085615. [PMID: 32855977 PMCID: PMC7443015 DOI: 10.1155/2020/8085615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 01/14/2023] Open
Abstract
Eosinophils play a critical role in the pathogenesis of allergic airway inflammation. However, the relative importance of eosinophil activation and pathogenicity in driving the progression of disease severity of allergic rhinitis (AR) remains to be defined. We aimed to assess the relation of activated and pathogenic eosinophils with disease severity of patients with AR. Peripheral blood and nasal samples were collected from patients with mild (n = 10) and moderate-severe (n = 21) house dust mite AR and healthy control subjects (n = 10) recruited prospectively. Expressions of activation and pathogenic markers on eosinophils in the blood and nose were analyzed by flow cytometry. The eosinophilic cation protein- (ECP-) releasing potential and the pro-Th2 function of blood eosinophils were compared between the mild and moderate-severe patients and healthy controls. Our results showed that the numbers of activated (CD44+ and CD69+) and pathogenic (CD101+CD274+) eosinophils in the blood and nose as well as blood eosinophil progenitors were increased in moderate-severe AR compared with the mild patients and healthy controls. In addition, the levels of activated and pathogenic eosinophils in the blood were positively correlated with the total nasal symptom score and serum ECP and eosinophil peroxidase (EPX) levels in patients with AR. Furthermore, the blood eosinophils obtained from the moderate-severe patients exhibited a higher potential of releasing ECP and EPX induced by CCL11 and of promoting Th2 responses than those from the mild patients and healthy controls. In conclusion, patients with moderate-severe AR are characterized by elevated levels of activated and pathogenic eosinophils, which are associated with higher production of ECP, EPX, and IL-4 in the peripheral blood.
Collapse
|
9
|
Zheng R, Chen Y, Shi J, Wang K, Huang X, Sun Y, Yang Q. Combinatorial IL-17RB, ST2, and TSLPR Signaling in Dendritic Cells of Patients With Allergic Rhinitis. Front Cell Dev Biol 2020; 8:207. [PMID: 32309281 PMCID: PMC7145954 DOI: 10.3389/fcell.2020.00207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives Myeloid dendritic cells (DCs) in patients with allergic rhinitis (AR) express higher levels of IL-17RB, ST2, and TSLPR. However, their functional roles in DCs are much less clear. This study aimed to determine the combined effects of these three receptor signals on the T cell-polarizing function of DCs in AR patients. Methods Monocyte-derived DCs (mo-DCs) were generated and stimulated with Toll-like receptor (TLR) 1-9 ligands. Der.p1-induced mo-DCs were stimulated with different combinations of IL-25, IL-33, and TSLP to determine phenotypic characteristics and then co-cultured with CD4+ T cells to assess Th2 cytokine production. Expression levels of IL-17RB, ST2, and TSLPR on myeloid DCs (mDCs) from peripheral blood of AR and healthy subjects were detected to confirm the association of these receptors with disease severity. Results TLR ligands induced AR-derived mo-DCs to increase IL-17RB, ST2, and TSLPR expression by varying degrees; among these, Der.p1 was the strongest inducer. Der.p1-induced mo-DCs from AR showed increased OX40L expression. IL-25, IL-33, and TSLP (alone or in double combination) significantly increased OX40L expression on Der.p1-induced mo-DCs from AR, thereby increasing the production of IL-4, IL-5, and IL-13 in co-cultured CD4+ T cells; triple combination further enhanced these effects. The percentage of IL-17RB+ST2+TSLPR+ mDCs was increased in AR, higher in moderate to severe phase than in mild phase, and positively correlated with the percentages of IL-4+, IL-5+, and IL-13+ T cells. Conclusion A combination of IL-17RB, ST2, and TSLPR signals amplified the Th2-polarizing function of DCs and was associated with disease severity in AR patients.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, First People's Hospital of Foshan, Foshan, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yueqi Sun
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Decreased IL-17RB expression impairs CD11b +CD11c - myeloid cell accumulation in gastric mucosa and host defense during the early-phase of Helicobacter pylori infection. Cell Death Dis 2019; 10:79. [PMID: 30692510 PMCID: PMC6349840 DOI: 10.1038/s41419-019-1312-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
Abstract
Interleukin-17 receptor B (IL-17RB), a member of the IL-17 receptor family activated by IL-17B/IL-17E, has been shown to be involved in inflammatory diseases. However, the regulation and function of IL-17RB in Helicobacter pylori (H. pylori) infection, especially in the early-phase is still unknown. Here, we found that gastric IL-17RB mRNA and protein were decreased in gastric mucosa of both patients and mice infected with H. pylori. In vitro experiments show that IL-17RB expression was down regulated via PI3K/AKT pathway on gastric epithelial cells (GECs) stimulated with H. pylori in a cagA-involved manner, while in vivo studies showed that the effect was partially dependent on cagA expression. IL-17E was also decreased during the early-phase of H. pylori infection, and provision of exogenous IL-17E resulted in increased CD11b+CD11c- myeloid cells accumulation and decreased bacteria colonization within the gastric mucosa. In the early-phase of H. pylori infection, IL-17E-IL-17RB promoted gastric epithelial cell-derived CXCL1/2/5/6 to attract CD11b+CD11c- myeloid cells, and also contributed to host defense by promoting the production of antibacterial protein Reg3a. This study defines a negative regulatory network involving IL-17E, GECs, IL-17RB, CD11b+CD11c- myeloid cells, and Reg3a in the early-phase of H. pylori infection, which results in an impaired host defense within the gastric microenvironment, suggesting IL-17RB as a potential early intervening target in H. pylori infection.
Collapse
|
11
|
Zheng R, Wang D, Wang K, Gao WX, Yang QT, Jiang LJ, Zhou M, Cao YJ, Shi J, Sun Y. Elevated expression of IL-17RB and ST2 on myeloid dendritic cells is associated with a Th2-skewed eosinophilic inflammation in nasal polyps. Clin Transl Allergy 2018; 8:50. [PMID: 30519393 PMCID: PMC6263180 DOI: 10.1186/s13601-018-0237-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Background Interleukin(IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP) underlie the crosstalk between epithelial cells and dendritic cells (DCs) during the development of Th2 responses. This study aimed to measure the expressions of IL-17RB, ST2 and TSLPR, receptor of IL-25, IL-33, and TSLP respectively, on myeloid DCs in nasal polyps (NP) and evaluate their association with local Th2 inflammation and disease severity in patients with NP. Methods Samples were collected from 30 NP patients and 16 control subjects recruited prospectively. The mRNA expression of cytokines, including TSLP, IL-25 and IL-33, as well as interferon (IFN)-γ, IL-4, IL-5, IL-13 and IL-17A in NP and control tissues was examined by qualitative polymerase chain reaction (qPCR). The expression of IL-17RB, ST2 and TSLPR as well as other surface markers on myeloid DCs (mDCs) was examined by flow cytometry. Results Increased numbers of total and activated mDCs were found in NP patients. mDCs demonstrated significantly higher expression of IL-17RB, ST2 and TSLPR than those in control tissues. The activated mDCs exhibited up-regulations of OX40L and ICOSL, but down-regulation of PDL1 in NP. Moreover, the IL-17RB, ST2 and TSLPR levels on mDCs were positively correlated with IL-25, IL-33 and TSLP mRNA levels, respectively, in NP. Furthermore, IL-17RB and ST2 expressions on mDCs were correlated with the IL-5 mRNA level as well as eosinophil number in NP. Importantly, the IL-17RB expression on mDCs and the OX40L expression on activated mDCs in NP were positively correlated with CT score and total nasal symptom score. Conclusions Increased expressions of IL-17RB and ST2 on mDCs are associated with enhanced local Th2 inflammation in NP, suggesting that mDCs might play a role in IL-25- and IL-33-induced type 2 responses and eosinophilic inflammation in NP. Electronic supplementary material The online version of this article (10.1186/s13601-018-0237-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Zheng
- 1Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China.,Guangzhou key Laboratory of Otorhinolarygology, Guangzhou, 510080 China
| | - Dan Wang
- 1Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China.,Guangzhou key Laboratory of Otorhinolarygology, Guangzhou, 510080 China
| | - Kai Wang
- 3Department of Otorhinolaryngology-Head and Neck Surgery, First People's Hospital of Foshan, Foshan, 528000 China
| | - Wen-Xiang Gao
- 1Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China.,Guangzhou key Laboratory of Otorhinolarygology, Guangzhou, 510080 China
| | - Qin-Tai Yang
- 4Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 China
| | - Li-Jie Jiang
- 1Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China.,Guangzhou key Laboratory of Otorhinolarygology, Guangzhou, 510080 China
| | - Min Zhou
- 1Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China.,Guangzhou key Laboratory of Otorhinolarygology, Guangzhou, 510080 China
| | - Yu-Jie Cao
- 1Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China.,Guangzhou key Laboratory of Otorhinolarygology, Guangzhou, 510080 China
| | - Jianbo Shi
- 1Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China.,Guangzhou key Laboratory of Otorhinolarygology, Guangzhou, 510080 China
| | - Yueqi Sun
- 1Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China.,Guangzhou key Laboratory of Otorhinolarygology, Guangzhou, 510080 China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Recent studies have highlighted the role of alarmins in asthma pathophysiology and tested the roles of these cytokines in asthmatic patients. This review will discuss the recent advances in the role of alarmins in asthma and the potential of future targeted therapies in asthma. RECENT FINDINGS Epithelial-derived cytokines can be released upon exposure to external stimuli, causing damage to the epithelial barrier and resulting in tissue inflammation. Of these cytokines, IL-25, IL-33 and thymic stromal lymphopoeitin (TSLP), have been associated with asthma. These alarmins are all not only overexpressed in asthmatic airways, particularly in airway epithelial cells, but also in other structural and immune cells. Furthermore, all three alarmins drive type-2 pro-inflammatory responses in several immune cells that have been identified as key players in the pathogenesis of asthma, including innate lymphoid type-2 cells. Clinical trials testing therapeutics that block pathways of the alarmins are in progress. SUMMARY To-date, only TSLP blockade has been reported in human clinical trials, and this approach has shown efficacy in asthmatic patients. Current body of evidence suggests that alarmins are useful upstream targets for treatment of asthma.
Collapse
|