1
|
Rick EM, Woolnough K, Richardson M, Monteiro W, Craner M, Bourne M, Cousins DJ, Swoboda I, Wardlaw AJ, Pashley CH. Identification of allergens from Aspergillus fumigatus-Potential association with lung damage in asthma. Allergy 2024; 79:1208-1218. [PMID: 38334146 DOI: 10.1111/all.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Component-resolved diagnosis allows detection of IgE sensitization having the advantage of reproducibility and standardization compared to crude extracts. The main disadvantage of the traditional allergen identification methods, 1- or 2-dimensional western blotting and screening of expression cDNA libraries with patients' IgEs, is that the native structure of the protein is not necessarily maintained. METHODS We used a novel immunoprecipitation technique in combination with mass spectrometry to identify new allergens of Aspergillus fumigatus. Magnetic Dynabeads coupled with anti-human IgE antibodies were used to purify human serum IgE and subsequently allergens from A. fumigatus protein extract. RESULTS Of the 184 proteins detected by subsequent mass peptide fingerprinting, a subset of 13 were recombinantly expressed and purified. In a panel of 52 A. fumigatus-sensitized people with asthma, 23 non-fungal-sensitized asthmatics and 18 healthy individuals, only the former showed an IgE reaction by immunoblotting and/or ELISA. We discovered 11 proteins not yet described as A. fumigatus allergens, with fructose-bisphosphate aldolase class II (FBA2) (33%), NAD-dependent malate dehydrogenase (31%) and Cu/Zn superoxide dismutase (27%) being the most prevalent. With respect to these three allergens, native versus denatured protein assays indicated a better recognition of the native proteins. Seven of 11 allergens fulfilled the WHO/IUIS criteria and were accepted as new A. fumigatus allergens. CONCLUSION In conclusion, we introduce a straightforward method of allergen identification from complex allergenic sources such as A. fumigatus by immunoprecipitation combined with mass spectrometry, which has the advantage over traditional methods of identifying allergens by maintaining the structure of the proteins.
Collapse
Affiliation(s)
- Eva-Maria Rick
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
- Division of Clinical and Molecular Allergology, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel Sulfeld, Germany
| | - Kerry Woolnough
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Matthew Richardson
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - William Monteiro
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Michelle Craner
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Michelle Bourne
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - David John Cousins
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Ines Swoboda
- Competence Center for Molecular Biotechnology, Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Andrew John Wardlaw
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Catherine Helen Pashley
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Tiew PY, Narayana JK, Quek MSL, Ang YY, Ko FWS, Poh ME, Jaggi TK, Xu H, Thng KX, Koh MS, Tee A, Hui DSC, Abisheganaden JA, Tsaneva-Atanasova K, Chew FT, Chotirmall SH. Sensitisation to recombinant Aspergillus fumigatus allergens and clinical outcomes in COPD. Eur Respir J 2023; 61:2200507. [PMID: 35926878 PMCID: PMC9816419 DOI: 10.1183/13993003.00507-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/24/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Variable clinical outcomes are reported with fungal sensitisation in chronic obstructive pulmonary disease (COPD), and it remains unclear which fungi and what allergens associate with the poorest outcomes. The use of recombinant as opposed to crude allergens for such assessment is unknown. METHODS A prospective multicentre assessment of stable COPD (n=614) was undertaken in five hospitals across three countries: Singapore, Malaysia and Hong Kong. Clinical and serological assessment was performed against a panel of 35 fungal allergens including crude and recombinant Aspergillus and non-Aspergillus allergens. Unsupervised clustering and topological data analysis (TDA) approaches were employed using the measured sensitisation responses to elucidate if sensitisation subgroups exist and their related clinical outcomes. RESULTS Aspergillus fumigatus sensitisation was associated with increased exacerbations in COPD. Unsupervised cluster analyses revealed two "fungal sensitisation" groups. The first was characterised by Aspergillus sensitisation and increased exacerbations, poorer lung function and worse prognosis. Polysensitisation in this group conferred even poorer outcome. The second group, characterised by Cladosporium sensitisation, was more symptomatic. Significant numbers of individuals demonstrated sensitisation responses to only recombinant (as opposed to crude) A. fumigatus allergens f 1, 3, 5 and 6, and exhibited increased exacerbations, poorer lung function and an overall worse prognosis. TDA validated these findings and additionally identified a subgroup within Aspergillus-sensitised COPD of patients with frequent exacerbations. CONCLUSION Aspergillus sensitisation is a treatable trait in COPD. Measuring sensitisation responses to recombinant Aspergillus allergens identifies an important patient subgroup with poor COPD outcomes that remains overlooked by assessment of only crude Aspergillus allergens.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Dept of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | | | | | - Yan Ying Ang
- Dept of Biological Sciences, National University of Singapore, Singapore
| | - Fanny Wai San Ko
- Dept of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Mau Ern Poh
- Dept of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Huiying Xu
- Dept of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Mariko Siyue Koh
- Dept of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Augustine Tee
- Dept of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore
| | - David Shu Cheong Hui
- Dept of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - John Arputhan Abisheganaden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Dept of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute and Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Fook Tim Chew
- Dept of Biological Sciences, National University of Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Dept of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
3
|
Wardlaw AJ, Rick EM, Pur Ozyigit L, Scadding A, Gaillard EA, Pashley CH. New Perspectives in the Diagnosis and Management of Allergic Fungal Airway Disease. J Asthma Allergy 2021; 14:557-573. [PMID: 34079294 PMCID: PMC8164695 DOI: 10.2147/jaa.s251709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Allergy to airway-colonising, thermotolerant, filamentous fungi represents a distinct eosinophilic endotype of often severe lung disease. This endotype, which particularly affects adult asthma, but also complicates other airway diseases and sometimes occurs de novo, has a heterogeneous presentation ranging from severe eosinophilic asthma to lobar collapse. Its hallmark is lung damage, characterised by fixed airflow obstruction (FAO), bronchiectasis and lung fibrosis. It has a number of monikers including severe asthma with fungal sensitisation (SAFS) and allergic bronchopulmonary aspergillosis/mycosis (ABPA/M), but these exclusive terms constitute only sub-sets of the condition. In order to capture the full extent of the syndrome we prefer the inclusive term allergic fungal airway disease (AFAD), the criteria for which are IgE sensitisation to relevant fungi in association with airway disease. The primary fungus involved is Aspergillus fumigatus, but a number of other thermotolerant species from several genera have been implicated. The unifying mechanism involves germination of inhaled fungal spores in the lung in the context of IgE sensitisation, leading to a persistent and vigorous eosinophilic inflammatory response in association with release of fungal proteases. Most allergenic fungi, including Alternaria and Cladosporium species, are not thermotolerant and cannot germinate in the airways so only act as aeroallergens and do not cause AFAD. Studies of the airway mycobiome have shown that A. fumigatus colonises the normal as much as the asthmatic airway, suggesting it is the tendency to become IgE-sensitised that is the critical triggering factor for AFAD rather than colonisation per se. Treatment is aimed at preventing exacerbations with glucocorticoids and increasingly by the use of anti-T2 biological therapies. Anti-fungal therapy has a limited place in management, but is an effective treatment for fungal bronchitis which complicates AFAD in about 10% of cases.
Collapse
Affiliation(s)
- Andrew J Wardlaw
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Eva-Maria Rick
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Leyla Pur Ozyigit
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Alys Scadding
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Erol A Gaillard
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, Department of Paediatrics, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Catherine H Pashley
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
4
|
Muthu V, Singh P, Choudhary H, Sehgal IS, Dhooria S, Prasad KT, Aggarwal AN, Garg M, Chakrabarti A, Agarwal R. Diagnostic Cutoffs and Clinical Utility of Recombinant Aspergillus fumigatus Antigens in the Diagnosis of Allergic Bronchopulmonary Aspergillosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:579-587. [PMID: 31520840 DOI: 10.1016/j.jaip.2019.08.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND The clinical utility of IgE against recombinant Aspergillus fumigatus (rAsp)-specific antigens in allergic bronchopulmonary aspergillosis (ABPA) remains unclear. OBJECTIVE To identify the optimal diagnostic cutoffs of rAsp-specific IgE in differentiating ABPA from A fumigatus-sensitized asthma (ASA), and define their utility in the diagnosis of ABPA. METHODS We enrolled consecutive subjects with ASA and ABPA. IgE against rAsp f1, f2, f3, f4, and f6 was assayed in all the subjects. We evaluated 3 fixed cutoffs (0.35, 0.5, and 1.0 kUA/L) for their diagnostic performance in the entire cohort. We also divided the study population into derivation and validation cohorts. Cutoffs for rAsp-specific IgE were obtained using the receiver-operating characteristic analysis in the derivation cohort. We then evaluated the diagnostic performance of these cutoffs in the validation cohort. We further correlated rAsp-specific IgE levels in ABPA with asthma control, spirometry, imaging, and immunologic markers. RESULTS We included 194 subjects (123 ABPA and 71 ASA). The statistically derived cutoffs proved superior to fixed cutoffs. IgE against rAsp f1 yielded the best combination of sensitivity (89%) and specificity (100%). The sensitivity and specificity of IgE against either rAsp f1 (cutoff, 4.465 kUA/L) or f2 (cutoff, 1.300 kUA/L) for diagnosing ABPA were 100% and 81%, respectively. The correlation between rAsp-specific IgE and most clinical parameters of ABPA was weak. CONCLUSIONS IgE against rAsp f1 and f2 (using receiver-operating characteristic-derived cutoffs) were found to be the most useful in differentiating ABPA from ASA. Because this study was conducted at a single center, our results require further validation.
Collapse
Affiliation(s)
- Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pawan Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Hansraj Choudhary
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashutosh Nath Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mandeep Garg
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India; Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India; Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|