1
|
Faruqui N, Williams DS, Briones A, Kepiro IE, Ravi J, Kwan TO, Mearns-Spragg A, Ryadnov MG. Extracellular matrix type 0: From ancient collagen lineage to a versatile product pipeline - JellaGel™. Mater Today Bio 2023; 22:100786. [PMID: 37692377 PMCID: PMC10491728 DOI: 10.1016/j.mtbio.2023.100786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular matrix type 0 is reported. The matrix is developed from a jellyfish collagen predating mammalian forms by over 0.5 billion years. With its ancient lineage, compositional simplicity, and resemblance to multiple collagen types, the matrix is referred to as the extracellular matrix type 0. Here we validate the matrix describing its physicochemical and biological properties and present it as a versatile, minimalist biomaterial underpinning a pipeline of commercialised products under the collective name of JellaGelTM. We describe an extensive body of evidence for folding and assembly of the matrix in comparison to mammalian matrices, such as bovine collagen, and its use to support cell growth and development in comparison to known tissue-derived products, such as Matrigel™. We apply the matrix to co-culture human astrocytes and cortical neurons derived from induced pluripotent stem cells and visualise neuron firing synchronicity with correlations indicative of a homogenous extracellular material in contrast to the performance of heterogenous commercial matrices. We prove the ability of the matrix to induce spheroid formation and support the 3D culture of human immortalised, primary, and mesenchymal stem cells. We conclude that the matrix offers an optimal solution for systemic evaluations of cell-matrix biology. It effectively combines the exploitable properties of mammalian tissue extracts or top-down matrices, such as biocompatibility, with the advantages of synthetic or bottom-up matrices, such as compositional control, while avoiding the drawbacks of the two types, such as biological and design heterogeneity, thereby providing a unique bridging capability of a stem extracellular matrix.
Collapse
Affiliation(s)
- Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Andrea Briones
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ibolya E. Kepiro
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Tristan O.C. Kwan
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| |
Collapse
|
2
|
Raising Awareness of the Severity of "Contactless Stings" by Cassiopea Jellyfish and Kin. Animals (Basel) 2021; 11:ani11123357. [PMID: 34944134 PMCID: PMC8698115 DOI: 10.3390/ani11123357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Current doctrine on jellyfish stings largely focuses on physical contact with a jellyfish. In rhizostome medusae capable of extruding agglomerations of nematocysts within mucus, physical contact is not necessary for skin irritation and pain. Here we highlight pain and symptoms reported by researchers and aquarists working with water around Cassiopea and several other jellyfish. We conclude that Cassiopea, long thought to be harmless, can lead to multi-day pain and rashes experienced largely as burning and itching sensations along entire limbs. We suggest that recommendations on sting avoidance expand to include consideration of these contactless stings so as to limit a previously under-publicized vector of envenomation. Abstract Discussion around avoidance and mitigation of jellyfish stings has traditionally focused on swimmers and divers being mindful of their behavior relative to swimming medusae (pelagic jellyfish). This framework must be restructured with the inclusion of the oblique risk posed by novel autonomous stinging structures like cassiosomes from Cassiopea (a jellyfish genus of the taxonomic order Rhizostomeae). Cassiosomes are released by Cassiopea sp. into subtropical waters that can consequently sting human skin, causing varying degrees of pain and irritation; this trait extends to other rhizostome jellyfish species. Swimmers and waders may put themselves at risk simply by coming into contact with agitated water in the vicinity of Cassiopea medusae, even without touching any part of the jellyfish (medusa, tentacles, or otherwise). Herein, we highlight details provided by 46 researchers and professional aquarists reporting incidents in which they experienced “stinging water” sensations, which we also refer to as “contactless stings’’. We report these findings in order to increase the awareness of a public safety hazard the community may be unaware of in their own labs, aquariums, and sampling locations.
Collapse
|
3
|
Ryan RYM, Seymour J, Loukas A, Lopez JA, Ikonomopoulou MP, Miles JJ. Immunological Responses to Envenomation. Front Immunol 2021; 12:661082. [PMID: 34040609 PMCID: PMC8141633 DOI: 10.3389/fimmu.2021.661082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023] Open
Abstract
Venoms are complex mixtures of toxic compounds delivered by bite or sting. In humans, the consequences of envenomation range from self-limiting to lethal. Critical host defence against envenomation comprises innate and adaptive immune strategies targeted towards venom detection, neutralisation, detoxification, and symptom resolution. In some instances, venoms mediate immune dysregulation that contributes to symptom severity. This review details the involvement of immune cell subtypes and mediators, particularly of the dermis, in host resistance and venom-induced immunopathology. We further discuss established venom-associated immunopathology, including allergy and systemic inflammation, and investigate Irukandji syndrome as a potential systemic inflammatory response. Finally, this review characterises venom-derived compounds as a source of immune modulating drugs for treatment of disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
| | - Jamie Seymour
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
- QIMR Berghofer Medical Research Institute, The University of Queensland, Herston, QLD, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, Spain
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - John J. Miles
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|