1
|
Valchářová T, Horký P, Douda K, Slavík O. The effect of parasitism on boldness and sheltering behaviour in albino and pigmented European catfish (Silurus glanis). Sci Rep 2024; 14:17531. [PMID: 39080432 PMCID: PMC11289108 DOI: 10.1038/s41598-024-67645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Parasites can change the behaviour of their hosts, but little attention has been given to the relationship between parasite effects on host behaviour and colouration. The correlation between disrupted melanin production and alterations in various physiological and behavioural traits, e.g., aggression, shoaling behaviour, stress responsiveness and sensitivity to brood parasitism, has been reported in albino fish. We hypothesized that parasitism would affect the behaviour of albino and pigmented conspecifics differently. In laboratory conditions, we infested a group of pigmented and a group of albino individuals of European catfish Silurus glanis with glochidia of two Uninoidea species, namely, the native species Anodonta anatina and the invasive species Sinanodonta woodiana, and investigated the effect of parasitization on the boldness and sheltering behaviour of the hosts. The behaviour of albino individuals differed from that of pigmented conspecifics both before and after parasitization. Parasitization with glochidia did not affect sheltering behaviour, but it increased boldness in pigmented individuals, whereas albino individuals did not exhibit any changes in behaviour. Sheltering results were consistent in both binomial and continuous variable analyses, whereas boldness was significant only in the binomial analyses. Our results demonstrate the reduced susceptibility of the albino phenotype to glochidia infestation, together with questions of the choice of analyses.
Collapse
Affiliation(s)
- Tereza Valchářová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague 6, Suchdol, 165 21, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague 6, Suchdol, 165 21, Czech Republic
| | - Karel Douda
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague 6, Suchdol, 165 21, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague 6, Suchdol, 165 21, Czech Republic
| |
Collapse
|
2
|
Infection with an acanthocephalan helminth reduces anxiety-like behaviour in crustacean host. Sci Rep 2022; 12:21649. [PMID: 36522391 PMCID: PMC9755125 DOI: 10.1038/s41598-022-25484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Trophically transmitted heteroxenous parasites of diverse clades can decrease or reverse antipredator behaviours in their intermediate hosts, thereby increasing their chances of reaching their final hosts. Such behavioural alterations could result from compromised cognitive abilities affecting fear- or more generally stress-related neurophysiological pathways. We tested this hypothesis in a key model system in the study of parasitic manipulation, the fish acanthocephalan parasite Pomphorhynchus tereticollis and its intermediate crustacean host Gammarus fossarum, using the 'threat of electric shock' paradigm. We exposed uninfected and infected G. fossarum to chronic and/or acute electric shock programs at two different intensities (voltage), and then quantified their sheltering behaviour as a proxy for anxiety-like state. Infected gammarids did not express anxiety-like response to electric shocks, while uninfected gammarids hid more when exposed to acute treatments, and when exposed to the high intensity chronic treatment. Interestingly, the lack of response in infected gammarids depended on parasite developmental stage. Our results support the hypothesis that this acanthocephalan parasite impacts the general anxiety-like circuitry of their intermediate host. Further studies are needed to investigate whether it involves inappropriate processing of information, impaired integration, or altered activation of downstream pathways initiating behavioural action.
Collapse
|
3
|
Fanton H, Franquet E, Logez M, Cavalli L, Kaldonski N. Acanthocephalan parasites reflect ecological status of freshwater ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156091. [PMID: 35609694 DOI: 10.1016/j.scitotenv.2022.156091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Acanthocephalans' position in food webs, in close interaction with free-living species, could provide valuable information about freshwater ecosystem health through the viability of the parasites' host populations. We explored Pomphorhynchus laevis cystacanths' and adults' intensities of infection, and the prevalence of infected hosts respectively in their Gammarus pulex intermediate hosts and Squalius cephalus definitive hosts in a Mediterranean river. First, we analysed the relationship between P. laevis intensity of infection, its two hosts populations and the other acanthocephalan species found (Pomphorhynchus tereticollis and Polymorphus minutus). Second, we characterised the influence of bacteriological, physicochemical and biological water parameters on these acanthocephalans, and their intermediate and definitive hosts. This research highlights that P. laevis infection was closely related to their two preferential hosts population in the river. Moreover, P. laevis intensity of infection was positively correlated with organic pollution in the river but negatively correlated with biodiversity and with ecological indexes of quality. Pomphorhynchus laevis could thus benefit from moderate freshwater pollution, which promotes their tolerant intermediate and definitive hosts.
Collapse
Affiliation(s)
- Hadrien Fanton
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| | - Evelyne Franquet
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Maxime Logez
- INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France; INRAE, UR RiverLy, F-69625 Villeurbanne Cedex, France
| | - Laurent Cavalli
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Nicolas Kaldonski
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
4
|
Abstract
The acanthocephalan parasite, Polymorphus minutus, manipulates its intermediate hosts' (gammarids) behaviour, presumably to facilitate its transmission to the definitive hosts. A fundamental question is whether this capability has evolved to target gammarids in general, or specifically sympatric gammarids. We assessed the responses to chemical cues from a non-host predator (the three-spined sticklebacks Gasterosteus aculeatus) in infected and non-infected gammarids; two native (Gammarus pulex and Gammarus fossarum), and one invasive (Echinogammarus berilloni) species, all sampled in the Paderborn Plateau (Germany). The level of predator avoidance was assessed by subjecting gammarids to choice experiments with the presence or absence of predator chemical cues. We did not detect any behavioural differences between uninfected and infected G. pulex and E. berilloni, but an elevated degree of predator avoidance in infected G. fossarum. Avoiding non-host predators may ultimately increase the probability of P. minutus' of predation by the definitive host. Our results suggested that P. minutus' ability to alter the host's behaviour may have evolved to specifically target sympatric gammarid host species. Uninfected gammarids did not appear to avoid the non-host predator chemical cues. Overall the results also opened the possibility that parasites may play a critical role in the success or failure of invasive species.
Collapse
|
5
|
Williams MA, Holland CV, Donohue I. Warming can alter host behavior in a similar manner to infection with behavior-manipulating parasites. Oecologia 2020; 194:65-74. [PMID: 32876762 DOI: 10.1007/s00442-020-04745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
Parasites are ecologically ubiquitous and, by modifying the physiology and behavior of their host organisms, act as key regulators of the dynamics and stability of ecosystems. It is, however, as yet unclear how parasitic relationships will act to moderate or accelerate the ecological impacts of global climate change. Here, we explore experimentally how the effects of parasites on both the physiology and behavior of their hosts can be moderated by warming, utilising a well-established aquatic host-parasite model system-the ecologically important amphipod Gammarus duebeni and its acanthocephalan parasite Polymorphus minutus. We show that, while only warming affected measured components of host physiology, parasite infection and warming both supressed predator-avoidance behavior of the host independently, yet in a similar manner. Six degrees of warming altered geotactic behaviors to the same extent as infection with behavior-manipulating parasites. These results indicate a novel mechanism by which parasites impact their ecosystems that could be critical to predicting the ecological impacts of warming. Our findings highlight the need for holistic knowledge of interaction networks, incorporating multiple interaction types and behaviors, to predict the effects of both warming and parasitism on the dynamics and stability of ecosystems.
Collapse
Affiliation(s)
- Maureen A Williams
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Dublin 2, Ireland. .,School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA.
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
The Ecological Importance of Amphipod–Parasite Associations for Aquatic Ecosystems. WATER 2020. [DOI: 10.3390/w12092429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amphipods are a key component of aquatic ecosystems due to their distribution, abundance and ecological role. They also serve as hosts for many micro- and macro-parasites. The importance of parasites and the necessity to include them in ecological studies has been increasingly recognized in the last two decades by ecologists and conservation biologists. Parasites are able to alter survival, growth, feeding, mobility, mating, fecundity and stressors’ response of their amphipod hosts. In addition to their modulating effects on host population size and dynamics, parasites affect community structure and food webs in different ways: by increasing the susceptibility of amphipods to predation, by quantitatively and qualitatively changing the host diet, and by modifying competitive interactions. Human-induced stressors such as climate change, pollution and species introduction that affect host–parasite equilibrium, may enhance or reduce the infection effects on hosts and ecosystems. The present review illustrates the importance of parasites for ecosystem processes using examples from aquatic environments and amphipods as a host group. As seen from the literature, amphipod–parasite systems are likely a key component of ecological processes, but more quantitative data from natural populations and field evidence are necessary to support the results obtained by experimental research.
Collapse
|
7
|
Labaude S, Cézilly F, De Marco L, Rigaud T. Increased temperature has no consequence for behavioral manipulation despite effects on both partners in the interaction between a crustacean host and a manipulative parasite. Sci Rep 2020; 10:11670. [PMID: 32669670 PMCID: PMC7363812 DOI: 10.1038/s41598-020-68577-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
Parasites alter many traits of their hosts. In particular, parasites known as "manipulative" may increase their probability of transmission by inducing phenotypic alterations in their intermediate hosts. Although parasitic-induced alterations can modify species' ecological roles, the proximate factors modulating this phenomenon remain poorly known. As temperature is known to affect host-parasite associations, understanding its precise impact has become a major challenge in a context of global warming. Gammarids are ecologically important freshwater crustaceans and serve as intermediate hosts for several acanthocephalan species. These parasites induce multiple effects on gammarids, including alterations of their behavior, ultimately leading to modifications in their functional role. Here, experimental infections were used to assess the effect of two temperatures on several traits of the association between Gammarus pulex and its acanthocephalan parasite Pomphorhynchus laevis. Elevated temperature affected hosts and parasites in multiple ways (decreased host survival, increased gammarids activity, faster parasites development and proboscis eversion). However, behavioral manipulation was unaffected by temperature. These results suggest that predicted change in temperature may have little consequences on the trophic transmission of parasites through changes in manipulation, although it may modify it through increased infection success and faster parasites development.
Collapse
Affiliation(s)
- Sophie Labaude
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France.
- Laboratoire "Génétique Evolutive Expérimentale", Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Paris, France.
| | - Frank Cézilly
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Lila De Marco
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Thierry Rigaud
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| |
Collapse
|
8
|
Fayard M, Dechaume-Moncharmont FX, Wattier R, Perrot-Minnot MJ. Magnitude and direction of parasite-induced phenotypic alterations: a meta-analysis in acanthocephalans. Biol Rev Camb Philos Soc 2020; 95:1233-1251. [PMID: 32342653 DOI: 10.1111/brv.12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta-analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite-induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro-habitat and the anti-predation behaviour of infected hosts, and by promoting energy-saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host-parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.
Collapse
Affiliation(s)
- Marion Fayard
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - François-Xavier Dechaume-Moncharmont
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Rémi Wattier
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | | |
Collapse
|
9
|
Galipaud M, Bollache L, Lagrue C. Acanthocephalan infection patterns in amphipods: a reappraisal in the light of recently discovered host cryptic diversity. DISEASES OF AQUATIC ORGANISMS 2019; 136:107-121. [PMID: 31575838 DOI: 10.3354/dao03379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphipods are model species in studies of pervasive biological patterns such as sexual selection, size assortative pairing and parasite infection patterns. Cryptic diversity (i.e. morphologically identical but genetically divergent lineages) has recently been detected in several species. Potential effects of such hidden diversity on biological patterns remain unclear, but potentially significant, and beg the question of whether we have missed part of the picture by involuntarily overlooking the occurrence and effects of cryptic diversity on biological patterns documented by previous studies. Here we tested for potential effects of cryptic diversity on parasite infection patterns in amphipod populations and discuss the implications of our results in the context of previously documented host-parasite infection patterns, especially amphipod-acanthocephalan associations. We assessed infection levels (prevalence and abundance) of 3 acanthocephalan species (Pomphorhynchus laevis, P. tereticollis and Polymorphus minutus) among cryptic lineages of the Gammarus pulex/G. fossarum species complex and G. roeseli from sampling sites where they occur in sympatry. We also evaluated potential differences in parasite-induced mortality among host molecular operational taxonomic units (MOTUs)-parasite species combinations. Acanthocephalan prevalence, abundance and parasite-induced mortality varied widely among cryptic MOTUs and parasite species; infection patterns were more variable among MOTUs than sampling sites. Overall, cryptic diversity in amphipods strongly influenced apparent infection levels and parasite-induced mortality. Future research on species with cryptic diversity should account for potential effects on documented biological patterns. Results from previous studies may also need to be reassessed in light of cryptic diversity and its pervasive effects.
Collapse
Affiliation(s)
- Matthias Galipaud
- Laboratoire Biogéosciences, UMR CNRS 6282 , Université Bourgogne Franche-Comté, 21000 Dijon, France
| | | | | |
Collapse
|
10
|
Øverli Ø, Johansen IB. Kindness to the Final Host and Vice Versa: A Trend for Parasites Providing Easy Prey? Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
11
|
Lagrue C. Impacts of crustacean invasions on parasite dynamics in aquatic ecosystems: A plea for parasite-focused studies. Int J Parasitol Parasites Wildl 2017; 6:364-374. [PMID: 30951574 PMCID: PMC5715223 DOI: 10.1016/j.ijppaw.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
While there is considerable interest in, and good evidence for, the role that parasites play in biological invasions, the potential parallel effects of species introduction on parasite dynamics have clearly received less attention. Indeed, much effort has been focused on how parasites can facilitate or limit invasions, and positively or negatively impact native host species and recipient communities. Contrastingly, the potential consequences of biological invasions for the diversity and dynamics of both native and introduced parasites have been and are still mainly overlooked, although successful invasion by non-native host species may have large, contrasting and unpredictable effects on parasites. This review looks at the links between biological invasions and pathogens, and particularly at crustacean invasions in aquatic ecosystems and their potential effects on native and invasive parasites, and discusses what often remains unknown even from well-documented systems. Aquatic crustaceans are hosts to many parasites and are often invasive. Published studies show that crustacean invasion can have highly contrasting effects on parasite dynamics, even when invasive host and parasite species are phylogenetically close to their native counterparts. These effects seem to be dependent on multiple factors such as host suitability, parasite life-cycle or host-specific resistance to parasitic manipulation. Furthermore, introduced hosts can have drastically contrasting effects on parasite standing crop and transmission, two parameters that should be independently assessed before drawing any conclusion on the potential effects of novel hosts on parasites and the key processes influencing disease dynamics following biological invasions. I conclude by calling for greater recognition of biological invasions' effects on parasite dynamics, more parasite-focused studies and suggest some potential ways to assess these effects.
Collapse
|
12
|
Galipaud M, Bollache L, Lagrue C. Variations in infection levels and parasite-induced mortality among sympatric cryptic lineages of native amphipods and a congeneric invasive species: Are native hosts always losing? INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2017; 6:439-447. [PMID: 30951566 PMCID: PMC5715213 DOI: 10.1016/j.ijppaw.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022]
Abstract
Shared parasites can strongly influence the outcome of competition between congeneric, sympatric hosts, and thus host population dynamics. Parasite-mediated competition is commonly hypothesized as an important factor in biological invasion success; invasive species often experience lower infection levels and/or parasite-induced mortality than native congeneric hosts. However, variation in infection levels among sympatric hosts can be due to contrasting abilities to avoid infection or different parasite-induced mortality rates following infection. Low parasite infection levels in a specific host can be due to either factor but have drastically different implications in interaction outcomes between sympatric hosts. We assessed acanthocephalan infection levels (prevalence and abundance) among cryptic molecular taxonomic units (MOTU) of the native G. pulex/G. fossarum species complex from multiple populations where they occur in sympatry. We concomitantly estimated the same parameters in the invasive Gammarus roeseli commonly found in sympatry with G. pulex/G. fossarum MOTUs. We then tested for potential differences in parasite-induced mortality among these alternative hosts. As expected, the invasive G. roeseli showed relatively low infection level and was not subject to parasite-induced mortality. We also found that both acanthocephalan infection levels and parasite-induced mortality varied greatly among cryptic MOTUs of the native amphipods. Contrary to expectations, some native MOTUs displayed levels of resistance to their local parasites similar to those observed in the invasive G. roeseli. Overall, cryptic diversity in native amphipods coupled with high levels of variability in infection levels and parasite-induced mortality documented here may strongly influence inter-MOTU interactions and native population dynamics as well as invasion success and population dynamics of the congeneric invasive G. roeseli. Parasite-mediated competition is an important factor in interspecific interactions. Acanthocephalan infection levels in native and invasive amphipods were assessed. Native amphipods also comprised sympatric, cryptic lineages. Infection levels and host mortality varied greatly among native cryptic host lineages. Some native amphipod lineages were also as resistant to parasites as invasive hosts.
Collapse
Affiliation(s)
- Matthias Galipaud
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Loïc Bollache
- UMR 6249 Chrono-environment, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Clément Lagrue
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
13
|
Labaude S, Cézilly F, Rigaud T. Temperature-related Intraspecific Variability in the Behavioral Manipulation of Acanthocephalan Parasites on Their Gammarid Hosts. THE BIOLOGICAL BULLETIN 2017; 232:82-90. [PMID: 28654335 DOI: 10.1086/692684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the effect of temperature on ecologically important species has become a major challenge in the context of global warming. However, the consequences of climate change cannot be accurately predicted without taking into consideration biotic interactions. Parasitic infection, in particular, constitutes a widespread biotic interaction, and parasites impact their hosts in multiple ways, eventually leading to consequences for communities and ecosystems. We explored the effect of temperature on the anti-predator behavior of a keystone freshwater invertebrate, the amphipod Gammarus fossarum. Gammarids regularly harbor manipulative acanthocephalan parasites that modify their anti-predator behavior in ways that potentially increase the probability of trophic transmission to their definitive hosts. We investigated the impact of temperature on gammarids infected by two acanthocephalan parasites, Pomphorhynchus tereticollis and Polymorphus minutus. Uninfected and naturally infected gammarids were acclimatized to different temperatures, and their behavior was measured. Our results showed that the effect of infection on the phototaxis of gammarids increased with increasing temperature, with a stronger effect induced by P. tereticollis. In contrast, temperature had no effect on the alteration of refuge use or geotaxis observed in infected gammarids. Our results provide the first direct evidence that temperature can affect the extent of behavioral alteration brought about by certain parasite species. However, the consequences of increased trophic transmission remain elusive; the supposedly key anti-predatory behavior was not significantly affected by exposure of gammarids to different temperatures.
Collapse
|
14
|
Lewis SE, Freund JG, Wankowski JL, Baldridge MG. Correlations between estrogen and testosterone concentrations, pairing status and acanthocephalan infection in an amphipod. J Zool (1987) 2015. [DOI: 10.1111/jzo.12309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Arnal A, Droit A, Elguero E, Ducasse H, Sánchez MI, Lefevre T, Misse D, Bédèrina M, Vittecoq M, Daoust S, Thomas F. Activity level and aggregation behavior in the crustacean gammarid Gammarus insensibilis parasitized by the manipulative trematode Microphallus papillorobustus. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Abstract
Trophically transmitted parasites may use multiple intermediate hosts, some of which may be 'key-hosts', i.e. contributing significantly more to the completion of the parasite life cycle, while others may be 'sink hosts' with a poor contribution to parasite transmission. Gammarus fossarum and Gammarus roeseli are sympatric crustaceans used as intermediate hosts by the acanthocephalan Pomphorhynchus laevis. Gammarus roeseli suffers higher field prevalence and is less sensitive to parasite behavioural manipulation and to predation by definitive hosts. However, no data are available on between-host differences in susceptibility to P. laevis infection, making it difficult to untangle the relative contributions of these hosts to parasite transmission. Based on results from estimates of prevalence in gammarids exposed or protected from predation and laboratory infections, G. fossarum specimens were found to be more susceptible to P. laevis infection. As it is more susceptible to both parasite infection and manipulation, G. fossarum is therefore a key host for P. laevis transmission.
Collapse
|
17
|
Host manipulation in the face of environmental changes: Ecological consequences. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:442-51. [PMID: 26835252 PMCID: PMC4699980 DOI: 10.1016/j.ijppaw.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
Abstract
Several parasite species, particularly those having complex life-cycles, are known to induce phenotypic alterations in their hosts. Most often, such alterations appear to increase the fitness of the parasites at the expense of that of their hosts, a phenomenon known as “host manipulation”. Host manipulation can have important consequences, ranging from host population dynamics to ecosystem engineering. So far, the importance of environmental changes for host manipulation has received little attention. However, because manipulative parasites are embedded in complex systems, with many interacting components, changes in the environment are likely to affect those systems in various ways. Here, after reviewing the ecological importance of manipulative parasites, we consider potential causes and consequences of changes in host manipulation by parasites driven by environmental modifications. We show that such consequences can extend to trophic networks and population dynamics within communities, and alter the ecological role of manipulative parasites such as their ecosystem engineering. We suggest that taking them into account could improve the accuracy of predictions regarding the effects of global change. We also propose several directions for future studies. Environmental changes can affect ecosystems in various ways. Manipulative parasites are known to play numerous roles within ecosystems. However, the effects of environmental changes on manipulation has been overlooked. We review those effects and their potential consequences on larger scales. We conclude with suggestions on the direction of future studies.
Collapse
|
18
|
Labaude S, Cézilly F, Tercier X, Rigaud T. Influence of host nutritional condition on post-infection traits in the association between the manipulative acanthocephalan Pomphorhynchus laevis and the amphipod Gammarus pulex. Parasit Vectors 2015. [PMID: 26223476 PMCID: PMC4520090 DOI: 10.1186/s13071-015-1017-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several parasites with complex life-cycles induce phenotypic alterations in their intermediate hosts. According to the host manipulation hypothesis, such phenotypic alterations are supposed to increase the fitness of the parasite at the expense of that of its intermediate hosts through increasing the probability of transmission to next hosts. Although the phenomenon has received a large attention, the proximate factors modulating the occurrence and intensity of host manipulation remain poorly known. It has however, been suggested that the amount of energy reserves in the intermediate host might be a key parameter, although its precise influence on the intensity of manipulation remains unclear. Dietary depletion in the host may also lead to compromise with other parasite traits, such as probability of establishing or growth or virulence. METHODS Here, we address the question through performing experimental infections of the freshwater amphipod Gammarus pulex with two different populations of the acanthocephalan fish parasite Pomphorhynchus laevis, and manipulation of host nutritional condition. Following exposure, gammarids were given either a "standard" diet (consisting of elm leaves and chironomid larvae) or a "deprived" food treatment (deprived in proteins), and infection parameters were recorded. Once parasites reached the stage at which they become infective to their definitive host, refuge use (a behavioural trait presumably implied in trophic transmission) was assessed, and metabolic rate was measured. RESULTS Infected gammarids exposed to the deprived food treatment showed a lower metabolic rate, indicative of a lower body condition, compared to those exposed to the standard food treatment. Parasite size was smaller, and, depending on the population of origin of the parasites, intensity of infection was lower or mortality was higher in deprived hosts. However, food treatment had no effect on either the timing or intensity of behavioural modifications. CONCLUSIONS Overall, while our results suggest that acanthocephalan parasites develop better in hosts in good condition, no evidence was found for an influence of host nutritional condition on host manipulation by parasites.
Collapse
Affiliation(s)
- Sophie Labaude
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France.
| | - Frank Cézilly
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France.
| | - Xavier Tercier
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France.
| | - Thierry Rigaud
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France.
| |
Collapse
|
19
|
Perrot-Minnot MJ, Sanchez-Thirion K, Cézilly F. Multidimensionality in host manipulation mimicked by serotonin injection. Proc Biol Sci 2015; 281:20141915. [PMID: 25339729 DOI: 10.1098/rspb.2014.1915] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Manipulative parasites often alter the phenotype of their hosts along multiple dimensions. 'Multidimensionality' in host manipulation could consist in the simultaneous alteration of several physiological pathways independently of one another, or proceed from the disruption of some key physiological parameter, followed by a cascade of effects. We compared multidimensionality in 'host manipulation' between two closely related amphipods, Gammarus fossarum and Gammarus pulex, naturally and experimentally infected with Pomphorhynchus laevis (Acanthocephala), respectively. To that end, we calculated in each host-parasite association the effect size of the difference between infected and uninfected individuals for six different traits (activity, phototaxis, geotaxis, attraction to conspecifics, refuge use and metabolic rate). The effects sizes were highly correlated between host-parasite associations, providing evidence for a relatively constant 'infection syndrome'. Using the same methodology, we compared the extent of phenotypic alterations induced by an experimental injection of serotonin (5-HT) in uninfected G. pulex to that induced by experimental or natural infection with P. laevis. We observed a significant correlation between effect sizes across the six traits, indicating that injection with 5-HT can faithfully mimic the 'infection syndrome'. This is, to our knowledge, the first experimental evidence that multidimensionality in host manipulation can proceed, at least partly, from the disruption of some major physiological mechanism.
Collapse
Affiliation(s)
| | | | - Frank Cézilly
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences, Dijon, France
| |
Collapse
|
20
|
Decreased movement related to parasite infection in a diel migratory coral reef fish. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1956-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Parasite-induced alteration of odour responses in an amphipod–acanthocephalan system. Int J Parasitol 2014; 44:969-75. [DOI: 10.1016/j.ijpara.2014.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/01/2014] [Indexed: 11/21/2022]
|
22
|
Jacquin L, Mori Q, Pause M, Steffen M, Medoc V. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts. PLoS One 2014; 9:e101684. [PMID: 25000519 PMCID: PMC4084987 DOI: 10.1371/journal.pone.0101684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/10/2014] [Indexed: 12/18/2022] Open
Abstract
Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.
Collapse
Affiliation(s)
- Lisa Jacquin
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France; McGill University, Department of Biology & Redpath Museum, Montréal, Québec, Canada
| | - Quentin Mori
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France
| | - Mickaël Pause
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France
| | - Mélanie Steffen
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France
| | - Vincent Medoc
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
23
|
Cézilly F, Perrot-Minnot MJ, Rigaud T. Cooperation and conflict in host manipulation: interactions among macro-parasites and micro-organisms. Front Microbiol 2014; 5:248. [PMID: 24966851 PMCID: PMC4052506 DOI: 10.3389/fmicb.2014.00248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022] Open
Abstract
Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research.
Collapse
Affiliation(s)
- Frank Cézilly
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de BourgogneDijon, France
- Institut Universitaire de FranceStrasbourg, France
| | | | - Thierry Rigaud
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de BourgogneDijon, France
| |
Collapse
|
24
|
Dianne L, Perrot-Minnot MJ, Bauer A, Guvenatam A, Rigaud T. Parasite-induced alteration of plastic response to predation threat: increased refuge use but lower food intake in Gammarus pulex infected with the acanothocephalan Pomphorhynchus laevis. Int J Parasitol 2014; 44:211-6. [DOI: 10.1016/j.ijpara.2013.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/25/2022]
|
25
|
Predator cue studies reveal strong trait-mediated effects in communities despite variation in experimental designs. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Cézilly F, Favrat A, Perrot-Minnot MJ. Multidimensionality in parasite-induced phenotypic alterations: ultimate versus proximate aspects. J Exp Biol 2013; 216:27-35. [DOI: 10.1242/jeb.074005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Summary
In most cases, parasites alter more than one dimension in their host phenotype. Although multidimensionality in parasite-induced phenotypic alterations (PIPAs) seems to be the rule, it has started to be addressed only recently. Here, we critically review some of the problems associated with the definition, quantification and interpretation of multidimensionality in PIPAs. In particular, we confront ultimate and proximate accounts, and evaluate their own limitations. We end up by introducing several suggestions for the development of future research, including some practical guidelines for the quantitative analysis of multidimensionality in PIPAs.
Collapse
Affiliation(s)
- Frank Cézilly
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
- Institut Universitaire de France
| | - Adrien Favrat
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Marie-Jeanne Perrot-Minnot
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
27
|
Durieux R, Rigaud T, Médoc V. Parasite-induced suppression of aggregation under predation risk in a freshwater amphipod. Behav Processes 2012; 91:207-13. [DOI: 10.1016/j.beproc.2012.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
|
28
|
Manipulative parasites may not alter intermediate host distribution but still enhance their transmission: field evidence for increased vulnerability to definitive hosts and non-host predator avoidance. Parasitology 2012; 140:258-65. [PMID: 23068018 DOI: 10.1017/s0031182012001552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities.
Collapse
|
29
|
Lewis SE, Hodel A, Sturdy T, Todd R, Weigl C. Impact of acanthocephalan parasites on aggregation behavior of amphipods (Gammarus pseudolimnaeus). Behav Processes 2012; 91:159-63. [PMID: 22906412 DOI: 10.1016/j.beproc.2012.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/26/2012] [Accepted: 07/11/2012] [Indexed: 11/17/2022]
Abstract
Acanthocephalan parasites can manipulate the behavior of their amphipod intermediate hosts in ways that increase the amphipod's risk of being eaten by a predator that serves as the final host for the parasite. Some asocial amphipod species have been shown to increase the likelihood of aggregation in response to chemical cues associated with predators. If such aggregation has anti-predation benefits, it might be subject to manipulation by parasites. We tested this hypothesis by comparing the preference of parasitized and unparasitized amphipods (Gammarus pseudolimnaeus) for associating with a group of unparasitized conspecifics, both in the presence and absence of chemical cues from predatory brook sticklebacks (Culaea inconstans). Amphipods with encysted parasites (Corynosoma sp.) avoided aggregating, whereas unparasitized amphipods preferred to aggregate. We also found that the risk of predation by sticklebacks faced by an individual amphipod was significantly lower when the amphipod was in a group compared to when it was alone. This suggests that the aggregation response of unparasitized amphipods is an adaptive response to escape predation. This study provides evidence for a novel parasitic manipulation of intermediate host behavior that is likely to increase transmission to the definitive host.
Collapse
Affiliation(s)
- Susan E Lewis
- Department of Life Sciences, Carroll University, 100 North East Avenue, Waukesha, WI 53186, United States.
| | | | | | | | | |
Collapse
|
30
|
Dianne L, Bollache L, Lagrue C, Franceschi N, Rigaud T. Larval size in acanthocephalan parasites: influence of intraspecific competition and effects on intermediate host behavioural changes. Parasit Vectors 2012; 5:166. [PMID: 22876882 PMCID: PMC3433308 DOI: 10.1186/1756-3305-5-166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022] Open
Abstract
Background Parasites often face a trade-off between exploitation of host resources and transmission probabilities to the next host. In helminths, larval growth, a major component of adult parasite fitness, is linked to exploitation of intermediate host resources and is influenced by the presence of co-infecting conspecifics. In manipulative parasites, larval growth strategy could also interact with their ability to alter intermediate host phenotype and influence parasite transmission. Methods We used experimental infections of Gammarus pulex by Pomphorhynchus laevis (Acanthocephala), to investigate larval size effects on host behavioural manipulation among different parasite sibships and various degrees of intra-host competition. Results Intra-host competition reduced mean P. laevis cystacanth size, but the largest cystacanth within a host always reached the same size. Therefore, all co-infecting parasites did not equally suffer from intraspecific competition. Under no intra-host competition (1 parasite per host), larval size was positively correlated with host phototaxis. At higher infection intensities, this relationship disappeared, possibly because of strong competition for host resources, and thus larval growth, and limited manipulative abilities of co-infecting larval acanthocephalans. Conclusions Our study indicates that behavioural manipulation is a condition-dependant phenomenon that needs the integration of parasite-related variables to be fully understood.
Collapse
Affiliation(s)
- Lucile Dianne
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | | | | | | | |
Collapse
|
31
|
Perrot-Minnot MJ, Maddaleno M, Balourdet A, Cézilly F. Host manipulation revisited: no evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02027.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Aude Balourdet
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences; Dijon; France
| | | |
Collapse
|
32
|
Dezfuli BS, Lui A, Squerzanti S, Lorenzoni M, Shinn AP. Confirmation of the hosts involved in the life cycle of an acanthocephalan parasite of Anguilla anguilla (L.) from Lake Piediluco and its effect on the reproductive potential of its amphipod intermediate host. Parasitol Res 2011; 110:2137-43. [DOI: 10.1007/s00436-011-2739-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 11/25/2011] [Indexed: 11/29/2022]
|
33
|
Luong LT, Hudson PJ, Braithwaite VA. Parasite-induced Changes in the Anti-predator Behavior of a Cricket Intermediate Host. Ethology 2011. [DOI: 10.1111/j.1439-0310.2011.01951.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Médoc V, Rigaud T, Motreuil S, Perrot-Minnot MJ, Bollache L. Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs. Naturwissenschaften 2011; 98:825-35. [PMID: 21814810 DOI: 10.1007/s00114-011-0831-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/30/2022]
Abstract
Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite's transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host-parasite and predator-parasite links.
Collapse
|
35
|
Dianne L, Perrot-Minnot MJ, Bauer A, Gaillard M, Léger E, Rigaud T. PROTECTION FIRST THEN FACILITATION: A MANIPULATIVE PARASITE MODULATES THE VULNERABILITY TO PREDATION OF ITS INTERMEDIATE HOST ACCORDING TO ITS OWN DEVELOPMENTAL STAGE. Evolution 2011; 65:2692-8. [DOI: 10.1111/j.1558-5646.2011.01330.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Westram AM, Baumgartner C, Keller I, Jokela J. Are cryptic host species also cryptic to parasites? Host specificity and geographical distribution of acanthocephalan parasites infecting freshwater Gammarus. INFECTION GENETICS AND EVOLUTION 2011; 11:1083-90. [PMID: 21470578 DOI: 10.1016/j.meegid.2011.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Many parasites infect multiple host species. In coevolving host-parasite interactions, theory predicts that parasites should be adapted to locally common hosts, which could lead to regional shifts in host preferences. We studied the interaction between freshwater Gammarus (Crustacea, Amphipoda) and their acanthocephalan parasites using a large-scale field survey and experiments, combined with molecular identification of cryptic host and parasite species. Gammarus pulex is a common host for multiple species of Acanthocephala in Europe but, in Switzerland, is less common than two cryptic members of the Gammarus fossarum species complex (type A and type B). We found that natural populations of these cryptic species were frequently infected by Pomphorhynchus tereticollis and Polymorphus minutus. Four additional parasite species occurred only locally. Parasites were more common in G. fossarum type B than in type A. Infection experiments using several host and parasite sources confirmed consistently lower infection rates in G. pulex than in G. fossarum type A, suggesting a general difference in susceptibility between the two species. In conclusion, we could show that cryptic host species differ in their interactions with parasites, but that these differences were much less dramatic than differences between G. fossarum (type A) and G. pulex. Our data suggest that the acanthocephalans in Switzerland have adapted to the two most common Gammarus species in this region where host species frequencies differ from near-by regions in Europe.
Collapse
Affiliation(s)
- A M Westram
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | | | | | | |
Collapse
|
37
|
Perrot-Minnot MJ, Gaillard M, Dodet R, Cézilly F. Interspecific differences in carotenoid content and sensitivity to UVB radiation in three acanthocephalan parasites exploiting a common intermediate host. Int J Parasitol 2011; 41:173-81. [DOI: 10.1016/j.ijpara.2010.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 11/30/2022]
|
38
|
Interspecific differences in drift behaviour between the native Gammarus pulex and the exotic Gammarus roeseli and possible implications for the invader’s success. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9899-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
FRANCESCHI N, BOLLACHE L, CORNET S, BAUER A, MOTREUIL S, RIGAUD T. Co-variation between the intensity of behavioural manipulation and parasite development time in an acanthocephalan-amphipod system. J Evol Biol 2010; 23:2143-2150. [DOI: 10.1111/j.1420-9101.2010.02076.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Cézilly F, Perrot-Minnot MJ. Interpreting multidimensionality in parasite-induced phenotypic alterations: panselectionism versus parsimony. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.18579.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Cézilly F, Thomas F, Médoc V, Perrot-Minnot MJ. Host-manipulation by parasites with complex life cycles: adaptive or not? Trends Parasitol 2010; 26:311-7. [DOI: 10.1016/j.pt.2010.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 03/15/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
|
42
|
Franceschi N, Cornet S, Bollache L, Dechaume-Moncharmont FX, Bauer A, Motreuil S, Rigaud T. VARIATION BETWEEN POPULATIONS AND LOCAL ADAPTATION IN ACANTHOCEPHALAN-INDUCED PARASITE MANIPULATION. Evolution 2010; 64:2417-30. [DOI: 10.1111/j.1558-5646.2010.01006.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Biological invasion and parasitism: invaders do not suffer from physiological alterations of the acanthocephalanPomphorhynchus laevis. Parasitology 2009; 137:137-47. [DOI: 10.1017/s0031182009991077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARYBiological invasions expose parasites to new invasive hosts in addition to their local hosts. However, local parasites are often less successful in infecting and exploiting their new hosts. This may have major consequences for the competitive ability of hosts, and finally on the fate of the parasite-host community. In Burgundy (Eastern France), the acanthocephalan parasite,Pomphorhynchus laevis, infects 2 amphipod species living in sympatry: the nativeGammarus pulexand the invasiveGammarus roeseli. WhileP. laevisaffects the behaviour and the immunity ofG. pulex,G. roeseliseems unaffected by the infection. In this study, we examined in detail the ability of the parasite to affect the immune system and resource storage of both gammarid species. We found that the infection was associated with a general decrease of the prophenoloxidase activity, haemocyte density, resistance to an artificial bacterial infection and level of sugar reserves inG. pulex, but not inG. roeseli. These results demonstrate a differential ability ofP. laevisto exploit its local and its invasive gammarid hosts. Potential mechanisms of these differential physiological alterations and their potential consequences on the coexistence of both gammarid species in sympatry are discussed.
Collapse
|
44
|
Current world literature. Curr Opin Allergy Clin Immunol 2009; 9:79-85. [PMID: 19106700 DOI: 10.1097/aci.0b013e328323adb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Ranganathan Y, Borges RM. Predatory and trophobiont-tending ants respond differently to fig and fig wasp volatiles. Anim Behav 2009. [DOI: 10.1016/j.anbehav.2009.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
A manipulative parasite increasing an antipredator response decreases its vulnerability to a nonhost predator. Anim Behav 2009. [DOI: 10.1016/j.anbehav.2009.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Field evidence for non-host predator avoidance in a manipulated amphipod. Naturwissenschaften 2009; 96:513-23. [DOI: 10.1007/s00114-008-0503-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 11/25/2022]
|
48
|
Kaldonski N, Perrot-Minnot MJ, Dodet R, Martinaud G, Cézilly F. Carotenoid-based colour of acanthocephalan cystacanths plays no role in host manipulation. Proc Biol Sci 2009; 276:169-76. [PMID: 18796399 PMCID: PMC2614247 DOI: 10.1098/rspb.2008.0798] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/22/2008] [Indexed: 11/12/2022] Open
Abstract
Manipulation by parasites is a catchy concept that has been applied to a large range of phenotypic alterations brought about by parasites in their hosts. It has, for instance, been suggested that the carotenoid-based colour of acanthocephalan cystacanths is adaptive through increasing the conspicuousness of infected intermediate hosts and, hence, their vulnerability to appropriate final hosts such as fish predators. We revisited the evidence in favour of adaptive coloration of acanthocephalan parasites in relation to increased trophic transmission using the crustacean amphipod Gammarus pulex and two species of acanthocephalans, Pomphorhynchus laevis and Polymorphus minutus. Both species show carotenoid-based colorations, but rely, respectively, on freshwater fish and aquatic bird species as final hosts. In addition, the two parasites differ in the type of behavioural alteration brought to their common intermediate host. Pomphorhynchus laevis reverses negative phototaxis in G. pulex, whereas P. minutus reverses positive geotaxis. In aquaria, trout showed selective predation for P. laevis-infected gammarids, whereas P. minutus-infected ones did not differ from uninfected controls in their vulnerability to predation. We tested for an effect of parasite coloration on increased trophic transmission by painting a yellow-orange spot on the cuticle of uninfected gammarids and by masking the yellow-orange spot of infected individuals with inconspicuous brown paint. To enhance realism, match of colour between painted mimics and true parasite was carefully checked using a spectrometer. We found no evidence for a role of parasite coloration in the increased vulnerability of gammarids to predation by trout. Painted mimics did not differ from control uninfected gammarids in their vulnerability to predation by trout. In addition, covering the place through which the parasite was visible did not reduce the vulnerability of infected gammarids to predation by trout. We discuss alternative evolutionary explanations for the origin and maintenance of carotenoid-based colorations in acanthocephalan parasites.
Collapse
Affiliation(s)
- Nicolas Kaldonski
- Université de Bourgogne6 Boulevard Gabriel, Dijon 21000, France
- UMR CNRS 5561 Biogéocsciences, Université de Bourgogne6 Boulevard Gabriel, Dijon 21000, France
| | - Marie-Jeanne Perrot-Minnot
- Université de Bourgogne6 Boulevard Gabriel, Dijon 21000, France
- UMR CNRS 5561 Biogéocsciences, Université de Bourgogne6 Boulevard Gabriel, Dijon 21000, France
| | - Raphaël Dodet
- Université de Bourgogne6 Boulevard Gabriel, Dijon 21000, France
| | | | - Frank Cézilly
- Université de Bourgogne6 Boulevard Gabriel, Dijon 21000, France
- UMR CNRS 5561 Biogéocsciences, Université de Bourgogne6 Boulevard Gabriel, Dijon 21000, France
| |
Collapse
|
49
|
Kullmann H, Thünken T, Baldauf SA, Bakker TCM, Frommen JG. Fish odour triggers conspecific attraction behaviour in an aquatic invertebrate. Biol Lett 2008; 4:458-60. [PMID: 18593668 DOI: 10.1098/rsbl.2008.0246] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Group living has evolved as an adaptation to predation in many animal species. In a multitude of vertebrates, the tendency to aggregate varies with the risk of predation, but experimental evidence for this is less well known in invertebrates. Here, we examine the tendency to aggregate in the freshwater amphipod Gammarus pulex in the absence and presence of predator fish odour. Without fish odour, the gammarids showed no significant tendency to aggregate. In contrast to this, in fish-conditioned water, they significantly preferred to stay close to conspecifics. Predation risk can, thus, influence gammarids social behaviour.
Collapse
Affiliation(s)
- Harald Kullmann
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | | | | | | | | |
Collapse
|
50
|
The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation. Int J Parasitol 2008; 38:1161-70. [DOI: 10.1016/j.ijpara.2008.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 11/23/2022]
|