1
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Korkmaz R, Rajabi H, Eshghi S, Gorb SN, Büscher TH. The frequency of wing damage in a migrating butterfly. INSECT SCIENCE 2023; 30:1507-1517. [PMID: 36434816 DOI: 10.1111/1744-7917.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018-2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.
Collapse
Affiliation(s)
- Rabiya Korkmaz
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Hamed Rajabi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
| | - Shahab Eshghi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
3
|
Brasovs A, Palaoro AV, Aprelev P, Beard CE, Adler PH, Kornev KG. Haemolymph viscosity in hawkmoths and its implications for hovering flight. Proc Biol Sci 2023; 290:20222185. [PMID: 37122259 PMCID: PMC10130727 DOI: 10.1098/rspb.2022.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Viscosity determines the resistance of haemolymph flow through the insect body. For flying insects, viscosity is a major physiological parameter limiting flight performance by controlling the flow rate of fuel to the flight muscles, circulating nutrients and rapidly removing metabolic waste products. The more viscous the haemolymph, the greater the metabolic energy needed to pump it through confined spaces. By employing magnetic rotational spectroscopy with nickel nanorods, we showed that viscosity of haemolymph in resting hawkmoths (Sphingidae) depends on wing size non-monotonically. Viscosity increases for small hawkmoths with high wingbeat frequencies, reaches a maximum for middle-sized hawkmoths with moderate wingbeat frequencies, and decreases in large hawkmoths with slower wingbeat frequencies but greater lift. Accordingly, hawkmoths with small and large wings have viscosities approaching that of water, whereas hawkmoths with mid-sized wings have more than twofold greater viscosity. The metabolic demands of flight correlate with significant changes in circulatory strategies via modulation of haemolymph viscosity. Thus, the evolution of hovering flight would require fine-tuned viscosity adjustments to balance the need for the haemolymph to carry more fuel to the flight muscles while decreasing the viscous dissipation associated with its circulation.
Collapse
Affiliation(s)
- Artis Brasovs
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Alexandre V. Palaoro
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Pavel Aprelev
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Charles E. Beard
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Peter H. Adler
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Konstantin G. Kornev
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
5
|
Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc Natl Acad Sci U S A 2021; 118:2102762118. [PMID: 34155114 PMCID: PMC8256005 DOI: 10.1073/pnas.2102762118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The painted lady butterfly is an annual migrant to northern regions, but the size of the immigration varies by more than 100-fold in successive years. Unlike the monarch, the painted lady breeds year round, and it has long been suspected that plant-growing conditions in winter-breeding locations drive this high annual variability. However, the regions where caterpillars develop over winter remained unclear. Here, we show for the European summer population that winter plant greenness in the savanna of sub-Saharan Africa is the key driver of the size of the spring immigration. Our results show that painted ladies regularly cross the Sahara Desert and elucidate the climatic drivers of the annual population dynamics. Many latitudinal insect migrants including agricultural pests, disease vectors, and beneficial species show huge fluctuations in the year-to-year abundance of spring immigrants reaching temperate zones. It is widely believed that this variation is driven by climatic conditions in the winter-breeding regions, but evidence is lacking. We identified the environmental drivers of the annual population dynamics of a cosmopolitan migrant butterfly (the painted lady Vanessa cardui) using a combination of long-term monitoring and climate and atmospheric data within the western part of its Afro-Palearctic migratory range. Our population models show that a combination of high winter NDVI (normalized difference vegetation index) in the Savanna/Sahel of sub-Saharan Africa, high spring NDVI in the Maghreb of North Africa, and frequent favorably directed tailwinds during migration periods are the three most important drivers of the size of the immigration to western Europe, while our atmospheric trajectory simulations demonstrate regular opportunities for wind-borne trans-Saharan movements. The effects of sub-Saharan vegetative productivity and wind conditions confirm that painted lady populations on either side of the Sahara are linked by regular mass migrations, making this the longest annual insect migration circuit so far known. Our results provide a quantification of the environmental drivers of large annual population fluctuations of an insect migrant and hold much promise for predicting invasions of migrant insect pests, disease vectors, and beneficial species.
Collapse
|
6
|
Dreyer D, Frost B, Mouritsen H, Lefèvre A, Menz M, Warrant E. A Guide for Using Flight Simulators to Study the Sensory Basis of Long-Distance Migration in Insects. Front Behav Neurosci 2021; 15:678936. [PMID: 34177479 PMCID: PMC8222684 DOI: 10.3389/fnbeh.2021.678936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Studying the routes flown by long-distance migratory insects comes with the obvious challenge that the animal's body size and weight is comparably low. This makes it difficult to attach relatively heavy transmitters to these insects in order to monitor their migratory routes (as has been done for instance in several species of migratory birds. However, the rather delicate anatomy of insects can be advantageous for testing their capacity to orient with respect to putative compass cues during indoor experiments under controlled conditions. Almost 20 years ago, Barrie Frost and Henrik Mouritsen developed a flight simulator which enabled them to monitor the heading directions of tethered migratory Monarch butterflies, both indoors and outdoors. The design described in the original paper has been used in many follow-up studies to describe the orientation capacities of mainly diurnal lepidopteran species. Here we present a modification of this flight simulator design that enables studies of nocturnal long-distance migration in moths while allowing controlled magnetic, visual and mechanosensory stimulation. This modified flight simulator has so far been successfully used to study the sensory basis of migration in two European and one Australian migratory noctuid species.
Collapse
Affiliation(s)
- David Dreyer
- Lund Vision Group, Department of Biology, University of Lund, Lund, Sweden
| | - Barrie Frost
- Department of Psychology, Queens University, Kingston, ON, Canada
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Adrien Lefèvre
- Lund Vision Group, Department of Biology, University of Lund, Lund, Sweden
| | - Myles Menz
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Eric Warrant
- Lund Vision Group, Department of Biology, University of Lund, Lund, Sweden.,Research School of Biology, Australian National University, Canberra, ACT, Australia.,Division of Information, Technology and Development, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
7
|
Parlin AF, Stratton SM, Guerra PA. Assaying lepidopteran flight directionality with non‐invasive methods that permit repeated use and release after testing. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| | - Samuel M. Stratton
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| | - Patrick A. Guerra
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| |
Collapse
|
8
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
9
|
Stefanescu C, Ubach A, Wiklund C. Timing of mating, reproductive status and resource availability in relation to migration in the painted lady butterfly. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Gao B, Hedlund J, Reynolds DR, Zhai B, Hu G, Chapman JW. The 'migratory connectivity' concept, and its applicability to insect migrants. MOVEMENT ECOLOGY 2020; 8:48. [PMID: 33292576 PMCID: PMC7718659 DOI: 10.1186/s40462-020-00235-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 05/06/2023]
Abstract
Migratory connectivity describes the degree of linkage between different parts of an animal's migratory range due to the movement trajectories of individuals. High connectivity occurs when individuals from one particular part of the migratory range move almost exclusively to another localized part of the migratory range with little mixing with individuals from other regions. Conversely, low migratory connectivity describes the situation where individuals spread over a wide area during migration and experience a large degree of mixing with individuals from elsewhere. The migratory connectivity concept is frequently applied to vertebrate migrants (especially birds), and it is highly relevant to conservation and management of populations. However, it is rarely employed in the insect migration literature, largely because much less is known about the migration circuits of most migratory insects than is known about birds. In this review, we discuss the applicability of the migratory connectivity concept to long-range insect migrations. In contrast to birds, insect migration circuits typically comprise multigenerational movements of geographically unstructured (non-discrete) populations between broad latitudinal zones. Also, compared to the faster-flying birds, the lower degree of control over movement directions would also tend to reduce connectivity in many insect migrants. Nonetheless, after taking account of these differences, we argue that the migratory connectivity framework can still be applied to insects, and we go on to consider postulated levels of connectivity in some of the most intensively studied insect migrants. We conclude that a greater understanding of insect migratory connectivity would be of value for conserving threatened species and managing pests.
Collapse
Affiliation(s)
- Boya Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK.
| | - Johanna Hedlund
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
- Lund University, Department of Biology, Centre for Animal Movement Research, Ecology Building, SE-223 62, Lund, Sweden
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Baoping Zhai
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jason W Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK.
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK.
| |
Collapse
|
11
|
Dreyer D, El Jundi B, Kishkinev D, Suchentrunk C, Campostrini L, Frost BJ, Zechmeister T, Warrant EJ. Evidence for a southward autumn migration of nocturnal noctuid moths in central Europe. ACTA ACUST UNITED AC 2018; 221:221/24/jeb179218. [PMID: 30552290 DOI: 10.1242/jeb.179218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/25/2018] [Indexed: 11/20/2022]
Abstract
Insect migrations are spectacular natural events and resemble a remarkable relocation of biomass between two locations in space. Unlike the well-known migrations of daytime flying butterflies, such as the painted lady (Vanessa cardui) or the monarch butterfly (Danaus plexippus), much less widely known are the migrations of nocturnal moths. These migrations - typically involving billions of moths from different taxa - have recently attracted considerable scientific attention. Nocturnal moth migrations have traditionally been investigated by light trapping and by observations in the wild, but in recent times a considerable improvement in our understanding of this phenomenon has come from studying insect orientation behaviour, using vertical-looking radar. In order to establish a new model organism to study compass mechanisms in migratory moths, we tethered each of two species of central European Noctuid moths in a flight simulator to study their flight bearings: the red underwing (Catocala nupta) and the large yellow underwing (Noctua pronuba). Both species had significantly oriented flight bearings under an unobscured view of the clear night sky and in the Earth's natural magnetic field. Red underwings oriented south-southeast, while large yellow underwings oriented southwest, both suggesting a southerly autumn migration towards the Mediterranean. Interestingly, large yellow underwings became disoriented on humid (foggy) nights while red underwings remained oriented. We found no evidence in either species for a time-independent sky compass mechanism as previously suggested for the large yellow underwing.
Collapse
Affiliation(s)
- David Dreyer
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Basil El Jundi
- Department of Zoology II, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Dmitry Kishkinev
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK.,Biological station Rybachy of Zoological Institute of Russian Academy of Sciences, Rybachy, 238535 Kaliningrad region, Russia
| | | | | | - Barrie J Frost
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | | | - Eric J Warrant
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
12
|
Minter M, Pearson A, Lim KS, Wilson K, Chapman JW, Jones CM. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. ECOLOGICAL ENTOMOLOGY 2018; 43:397-411. [PMID: 30046219 PMCID: PMC6055614 DOI: 10.1111/een.12521] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 05/02/2023]
Abstract
1. Every year billions of insects engage in long-distance, seasonal mass migrations which have major consequences for agriculture, ecosystem services and insect-vectored diseases. Tracking this movement in the field is difficult, with mass migrations often occurring at high altitudes and over large spatial scales. 2. As such, tethered flight provides a valuable tool for studying the flight behaviour of insects, giving insights into flight propensity (e.g. distance, duration and velocity) and orientation under controlled laboratory settings. By experimentally manipulating a variety of environmental and physiological traits, numerous studies have used this technology to study the flight behaviour of migratory insects ranging in size from aphids to butterflies. Advances in functional genomics promise to extend this to the identification of genetic factors associated with flight. Tethered flight techniques have been used to study migratory flight characteristics in insects for more than 50 years, but have never been reviewed. 3. This study summarises the key findings of this technology, which has been employed in studies of species from six Orders. By providing detailed descriptions of the tethered flight systems, the present study also aims to further the understanding of how tethered flight studies support field observations, the situations under which the technology is useful and how it might be used in future studies. 4. The aim is to contextualise the available tethered flight studies within the broader knowledge of insect migration and to describe the significant contribution these systems have made to the literature.
Collapse
Affiliation(s)
- Melissa Minter
- Department of BiologyUniversity of York, Heslington WayYorkU.K.
- Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireU.K.
| | - Aislinn Pearson
- Computational and Analytical Sciences, Rothamsted ResearchHertfordshireU.K.
| | - Ka S. Lim
- Computational and Analytical Sciences, Rothamsted ResearchHertfordshireU.K.
| | - Kenneth Wilson
- Lancaster Environment CentreLancaster UniversityLancasterU.K.
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of ExeterCornwallU.K.
| | - Christopher M. Jones
- Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireU.K.
- Vector Biology, Liverpool School of Tropical MedicineLiverpoolU.K.
| |
Collapse
|
13
|
Talavera G, Vila R. Discovery of mass migration and breeding of the painted lady butterflyVanessa carduiin the Sub-Sahara: the Europe-Africa migration revisited. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
| |
Collapse
|
14
|
Jones HBC, Lim KS, Bell JR, Hill JK, Chapman JW. Quantifying interspecific variation in dispersal ability of noctuid moths using an advanced tethered flight technique. Ecol Evol 2015; 6:181-90. [PMID: 26811783 PMCID: PMC4716516 DOI: 10.1002/ece3.1861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 11/29/2022] Open
Abstract
Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12–27 mm forewing length (~40–660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.
Collapse
Affiliation(s)
- Hayley B C Jones
- Department of Agro Ecology Rothamsted Research Harpenden Hertfordshire UK; Department of Biology University of York York UK
| | - Ka S Lim
- Department of Agro Ecology Rothamsted Research Harpenden Hertfordshire UK
| | - James R Bell
- Department of Agro Ecology Rothamsted Research Harpenden Hertfordshire UK
| | - Jane K Hill
- Department of Biology University of York York UK
| | - Jason W Chapman
- Department of Agro Ecology Rothamsted Research Harpenden Hertfordshire UK; Environment and Sustainability Institute University of Exeter Penryn Cornwall UK
| |
Collapse
|
15
|
Guerra PA, Reppert SM. Sensory basis of lepidopteran migration: focus on the monarch butterfly. Curr Opin Neurobiol 2015; 34:20-8. [PMID: 25625216 DOI: 10.1016/j.conb.2015.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/27/2023]
Abstract
In response to seasonal habitats, migratory lepidopterans, exemplified by the monarch butterfly, have evolved migration to deal with dynamic conditions. During migration, monarchs use orientation mechanisms, exploiting a time-compensated sun compass and a light-sensitive inclination magnetic compass to facilitate fall migration south. The sun compass is bidirectional with overwintering coldness triggering the change in orientation direction for remigration northward in the spring. The timing of the remigration and milkweed emergence in the southern US have co-evolved for propagation of the migration. Current research is uncovering the anatomical and molecular substrates that underlie migratory-relevant sensory mechanisms with the antennae being critical components. Orientation mechanisms may be detrimentally affected by environmental factors such as climate change and sensory interference from human-generated sources.
Collapse
Affiliation(s)
- Patrick A Guerra
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Chapman JW, Reynolds DR, Wilson K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 2015; 18:287-302. [PMID: 25611117 DOI: 10.1111/ele.12407] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 01/05/2023]
Abstract
Myriad tiny insect species take to the air to engage in windborne migration, but entomology also has its 'charismatic megafauna' of butterflies, large moths, dragonflies and locusts. The spectacular migrations of large day-flying insects have long fascinated humankind, and since the advent of radar entomology much has been revealed about high-altitude night-time insect migrations. Over the last decade, there have been significant advances in insect migration research, which we review here. In particular, we highlight: (1) notable improvements in our understanding of lepidopteran navigation strategies, including the hitherto unsuspected capabilities of high-altitude migrants to select favourable winds and orientate adaptively, (2) progress in unravelling the neuronal mechanisms underlying sun compass orientation and in identifying the genetic complex underpinning key traits associated with migration behaviour and performance in the monarch butterfly, and (3) improvements in our knowledge of the multifaceted interactions between disease agents and insect migrants, in terms of direct effects on migration success and pathogen spread, and indirect effects on the evolution of migratory systems. We conclude by highlighting the progress that can be made through inter-phyla comparisons, and identify future research areas that will enhance our understanding of insect migration strategies within an eco-evolutionary perspective.
Collapse
Affiliation(s)
- Jason W Chapman
- AgroEcology Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK; Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | | | | |
Collapse
|
17
|
Larranaga N, Baguette M, Calvez O, Trochet A, Ducatez S, Legrand D. Intra- and inter-individual variations in flight direction in a migratory butterfly co-vary with individual mobility. J Exp Biol 2013; 216:3156-63. [DOI: 10.1242/jeb.082883] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Flight direction is a major component of animal's migratory success. However, few studies focused on variation in flight direction both between and within individuals, which is likely to be correlated with other traits implied in migration processes. We report patterns of intra- and inter-individual variation in flight direction in the large white butterfly Pieris brassicae (Linnaeus, 1758). The presence of inter-individual variation in flight direction for individuals tested in the same conditions suggests that this trait is inherited in P. brassicae and we propose that a rapid loss of migratory skills may exist in the absence of selection for migration. The magnitude of intra-individual variation was negatively correlated to two surrogates of the potential for migration: mobility and wing length. Highly mobile and longed-winged individuals within the same family were found to fly in similar directions, whereas less mobile and short-winged individuals displayed divergent flight direction compared to the average direction of their kin. There was also a negative correlation between the variance to the mean flight direction of a family and its average mobility, but no correlation with wing length. We discuss these issues in terms of evolution of traits potentially implied both in migration and dispersal in P. brassicae.
Collapse
|
18
|
Merlin C, Heinze S, Reppert SM. Unraveling navigational strategies in migratory insects. Curr Opin Neurobiol 2011; 22:353-61. [PMID: 22154565 DOI: 10.1016/j.conb.2011.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
Abstract
Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration.
Collapse
Affiliation(s)
- Christine Merlin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
19
|
Chapman JW, Drake VA, Reynolds DR. Recent insights from radar studies of insect flight. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:337-56. [PMID: 21133761 DOI: 10.1146/annurev-ento-120709-144820] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Radar has been used to study insects in flight for over 40 years and has helped to establish the ubiquity of several migration phenomena: dawn, morning, and dusk takeoffs; approximate downwind transport; concentration at wind convergences; layers in stable nighttime atmospheres; and nocturnal common orientation. Two novel radar designs introduced in the late 1990s have significantly enhanced observing capabilities. Radar-based research now encompasses foraging as well as migration and is increasingly focused on flight behavior and the environmental cues influencing it. Migrant moths have been shown to employ sophisticated orientation and height-selection strategies that maximize displacements in seasonally appropriate directions; they appear to have an internal compass and to respond to turbulence features in the airflow. Tracks of foraging insects demonstrate compensation for wind drift and use of optimal search paths to locate resources. Further improvements to observing capabilities, and employment in operational as well as research roles, appear feasible.
Collapse
Affiliation(s)
- Jason W Chapman
- Plant and Invertebrate Ecology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | | | | |
Collapse
|
20
|
Asymmetric life-history decision-making in butterfly larvae. Oecologia 2010; 165:301-10. [PMID: 20953962 PMCID: PMC3021710 DOI: 10.1007/s00442-010-1804-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/23/2010] [Indexed: 11/23/2022]
Abstract
In temperate environments, insects appearing in several generations in the growth season typically have to decide during the larval period whether to develop into adulthood, or to postpone adult emergence until next season by entering a species-specific diapause stage. This decision is typically guided by environmental cues experienced during development. An early decision makes it possible to adjust growth rate, which would allow the growing larva to respond to time stress involved in direct development, whereas a last-minute decision would instead allow the larva to use up-to-date information about which developmental pathway is the most favourable under the current circumstances. We study the timing of the larval pathway decision-making between entering pupal winter diapause and direct development in three distantly related butterflies (Pieris napi, Araschnia levana and Pararge aegeria). We pinpoint the timing of the larval diapause decision by transferring larvae from first to last instars from long daylength (inducing direct development) to short daylength conditions (inducing diapause), and vice versa. Results show that the pathway decision is typically made in the late instars in all three species, and that the ability to switch developmental pathway late in juvenile life is conditional; larvae more freely switched from diapause to direct development than in the opposite direction. We contend that this asymmetry is influenced by the additional physiological preparations needed to survive the long and cold winter period, and that the reluctance to make a late decision to enter diapause has the potential to be a general trait among temperate insects.
Collapse
|
21
|
Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 2010; 327:682-5. [PMID: 20133570 DOI: 10.1126/science.1182990] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many insects undertake long-range seasonal migrations to exploit temporary breeding sites hundreds or thousands of kilometers apart, but the behavioral adaptations that facilitate these movements remain largely unknown. Using entomological radar, we showed that the ability to select seasonally favorable, high-altitude winds is widespread in large day- and night-flying migrants and that insects adopt optimal flight headings that partially correct for crosswind drift, thus maximizing distances traveled. Trajectory analyses show that these behaviors increase migration distances by 40% and decrease the degree of drift from seasonally optimal directions. These flight behaviors match the sophistication of those seen in migrant birds and help explain how high-flying insects migrate successfully between seasonal habitats.
Collapse
Affiliation(s)
- Jason W Chapman
- Plant and Invertebrate Ecology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | | | | | | | | | |
Collapse
|