1
|
Riva MG, Sobrero L, Menchetti L, Minero M, Padalino B, Dalla Costa E. Unhandled horses classified with broken/unbroken test (BUT) exhibit longer avoidance, flight reactions, and displacement behaviors when approached by humans. Front Vet Sci 2022; 9:1022255. [PMID: 36225797 PMCID: PMC9548601 DOI: 10.3389/fvets.2022.1022255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Horses with a low level of tameness are at higher risk for transport-related disease and injury; hence, European regulations for the protection of animals during transport (EC 1/2005) are stricter for unhandled (unbroken) horses. However, the regulation does not provide adequate tools for unhandled horse identification. The Broken/Unbroken Test (BUT) was developed and validated to easily identify whether a horse is broken (handled) or not. As a further validation step, the aim of this study was to assess whether there is any correspondence between the BUT classification and the behavioral response of the horse. A total of 100 healthy Italian Heavy Draft horses were video recorded when assessed with the BUT. In total, 90 videos (48 handled and 42 unhandled horses) matched the inclusion criteria and were assessed. The behavior of each horse was evaluated by three observers blinded as to the horses' experience with a focal animal continuous recording method. Behaviors were classified in four categories: stress, avoidance, displacement, and aggression. A Mann–Whitney test was used to identify differences in behavioral patterns between horses classified as handled or unhandled with the BUT. Unhandled horses showed not only a significantly longer time to be approached by the handler but also more avoidance and flight reactions (p < 0.001). Unhandled horses showed significantly longer displacement behaviors, such as sniffing (p < 0.001). These findings further validate the BUT classification and confirm that horses classified as unhandled are more prone to show avoidance and flight reactions when approached by humans. For this reason, the adoption of the BUT could be helpful to minimize humans' horse-related injuries and, if applied regularly before loading, to contribute to safeguard the welfare of horses during transport.
Collapse
Affiliation(s)
- Maria Giorgia Riva
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Lucia Sobrero
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Laura Menchetti
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Michela Minero
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Barbara Padalino
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Emanuela Dalla Costa
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
- *Correspondence: Emanuela Dalla Costa
| |
Collapse
|
2
|
Budaev S, Kristiansen TS, Giske J, Eliassen S. Computational animal welfare: towards cognitive architecture models of animal sentience, emotion and wellbeing. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201886. [PMID: 33489298 PMCID: PMC7813262 DOI: 10.1098/rsos.201886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 05/08/2023]
Abstract
To understand animal wellbeing, we need to consider subjective phenomena and sentience. This is challenging, since these properties are private and cannot be observed directly. Certain motivations, emotions and related internal states can be inferred in animals through experiments that involve choice, learning, generalization and decision-making. Yet, even though there is significant progress in elucidating the neurobiology of human consciousness, animal consciousness is still a mystery. We propose that computational animal welfare science emerges at the intersection of animal behaviour, welfare and computational cognition. By using ideas from cognitive science, we develop a functional and generic definition of subjective phenomena as any process or state of the organism that exists from the first-person perspective and cannot be isolated from the animal subject. We then outline a general cognitive architecture to model simple forms of subjective processes and sentience. This includes evolutionary adaptation which contains top-down attention modulation, predictive processing and subjective simulation by re-entrant (recursive) computations. Thereafter, we show how this approach uses major characteristics of the subjective experience: elementary self-awareness, global workspace and qualia with unity and continuity. This provides a formal framework for process-based modelling of animal needs, subjective states, sentience and wellbeing.
Collapse
Affiliation(s)
- Sergey Budaev
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Tore S. Kristiansen
- Research Group Animal Welfare, Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | - Jarl Giske
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Sigrunn Eliassen
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| |
Collapse
|
3
|
Rebora M, Salerno G, Piersanti S, Michels J, Gorb S. Structure and biomechanics of the antennal grooming mechanism in the southern green stink bug Nezara viridula. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:57-67. [PMID: 30521769 DOI: 10.1016/j.jinsphys.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Insects devote a large amount of time to self-groom to remove foreign material, especially from their sensory appendages. Using various microscopy techniques and behavioural experiments on intact and ablated insects, the present study investigates the antennal grooming of the southern green stinkbug Nezara viridula, which represents a serious pest of different crops in most areas of the world. The antennal grooming behaviour encompasses an action of scraping involving the tibial comb complex (tibial comb + fossula) of both forelegs, generally followed by the tibial comb complex grooming of one leg using the tarsal hairy adhesive pad of the opposite leg (rubbing). From our observations, we can exclude a role in the antennal grooming of other structures such as the foretibial apparatus, while we show an involvement of this last structure in repositioning the stylets inside the labium. The external and internal morphology (cryo-scanning and transmission electron microscopy) and the evidence for the presence of large proportions of the elastic protein resilin (confocal laser scanning microscopy) in some parts of both the tibial comb complex and the foretibial apparatus are shown, and their functional roles are discussed. For the first time we demonstrated here the multipurpose role of the basitarsal hairy adhesive pad that is involved in both antennal grooming and adhesion to the substrate.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy
| | - Jan Michels
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Germany
| |
Collapse
|
4
|
Finet C, Decaras A, Armisén D, Khila A. The achaete-scute complex contains a single gene that controls bristle development in the semi-aquatic bugs. Proc Biol Sci 2018; 285:rspb.2018.2387. [PMID: 30487316 PMCID: PMC6283939 DOI: 10.1098/rspb.2018.2387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022] Open
Abstract
The semi-aquatic bugs (Heteroptera, Gerromorpha) conquered water surfaces worldwide and diversified to occupy puddles, ponds, streams, lakes, mangroves and even oceans. Critical to this lifestyle is the evolution of sets of hairs that allow these insects to maintain their body weight on the water surface and protect the animals against wetting and drowning. In addition, the legs of these insects are equipped with various grooming combs that are important for cleaning and tidying the hair layers for optimal functional efficiency. Here we show that the hairs covering the legs of water striders represent innervated bristles. Genomic and transcriptomic analyses revealed that in water striders the achaete–scute complex, known to control bristle development in flies, contains only the achaete–scute homologue (ASH) gene owing to the loss of the gene asense. Using RNA interference, we show that ASH plays a pivotal role in the development of both bristles and grooming combs in water striders. Our data suggest that the ASH locus may have contributed to the adaptation to water surface lifestyle through shaping the hydrophobic bristles that prevent water striders from wetting and allow them to exploit water surface tension.
Collapse
Affiliation(s)
- Cédric Finet
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69364 Lyon, France
| | - Amélie Decaras
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69364 Lyon, France
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69364 Lyon, France
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
5
|
Grooming behavior in American cockroach is affected by novelty and odor. ScientificWorldJournal 2014; 2014:329514. [PMID: 25401135 PMCID: PMC4221865 DOI: 10.1155/2014/329514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 11/18/2022] Open
Abstract
The main features of grooming behavior are amazingly similar among arthropods and land vertebrates and serve the same needs. A particular pattern of cleaning movements in cockroaches shows cephalo-caudal progression. Grooming sequences become longer after adaptation to the new setting. Novelty related changes in grooming are recognized as a form of displacement behavior. Statistical analysis of behavior revealed that antennal grooming in American cockroach, Periplaneta americana L., was significantly enhanced in the presence of odor.
Collapse
|
6
|
Pecora G, Addessi E, Schino G, Bellagamba F. Do displacement activities help preschool children to inhibit a forbidden action? J Exp Child Psychol 2014; 126:80-90. [DOI: 10.1016/j.jecp.2014.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/13/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
7
|
Grooming Behavior as a Mechanism of Insect Disease Defense. INSECTS 2013; 4:609-30. [PMID: 26462526 PMCID: PMC4553506 DOI: 10.3390/insects4040609] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 11/17/2022]
Abstract
Grooming is a well-recognized, multipurpose, behavior in arthropods and vertebrates. In this paper, we review the literature to highlight the physical function, neurophysiological mechanisms, and role that grooming plays in insect defense against pathogenic infection. The intricate relationships between the physical, neurological and immunological mechanisms of grooming are discussed to illustrate the importance of this behavior when examining the ecology of insect-pathogen interactions.
Collapse
|
8
|
Ventricelli M, Focaroli V, De Petrillo F, Macchitella L, Paglieri F, Addessi E. How capuchin monkeys (Cebus apella) behaviorally cope with increasing delay in a self-control task. Behav Processes 2013; 100:146-52. [DOI: 10.1016/j.beproc.2013.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/30/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
|
9
|
Anselme P. Preference for rich, random tactile stimulation in woodlice (Porcellio scaber). LEARNING AND MOTIVATION 2013. [DOI: 10.1016/j.lmot.2013.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Spécificité et propriétés interactives des motivations incitatrices : le rôle de la cognition. PSYCHOLOGIE FRANCAISE 2012. [DOI: 10.1016/j.psfr.2012.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Buckley V, Semple S. Evidence that displacement activities facilitate behavioural transitions in ring-tailed lemurs. Behav Processes 2012; 90:433-5. [DOI: 10.1016/j.beproc.2012.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/12/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
|