1
|
Morimoto J, McDonald GC, Wigby S. Social group composition modulates the role of last male sperm precedence in post-copulatory sexual selection. J Evol Biol 2023; 36:1102-1115. [PMID: 37341163 PMCID: PMC10946607 DOI: 10.1111/jeb.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
In many species, the order in which males mate with a female explains much of the variation in paternity arising from post-copulatory sexual selection. Research in Drosophila suggests that mating order may account for the majority of the variance in male reproductive success. However, the effects of mating order on paternity bias might not be static but could potentially vary with social or environmental factors. To test this idea, we used an existing dataset, collated from an experiment we previously published (Morimoto et al., PLoS One, 11, 2016, e0154468), with the addition of unpublished data from the same experiment. These previous experiments manipulated larval density in Drosophila melanogaster which generated variation in male and female body size, assembled groups of individuals of different sizes, and measured the mating success and paternity share of focal males. The data presented here provides information on each focal male's mating order and the frequency in which focal males remated with same females ('repetitive matings'). We combined this information with our previously reported focal male reproductive success to partition variance in paternity into male mating order and repetitive matings across groups that differed in the body size composition of males and females. We found, as expected, that male mating order explained a considerable portion of the variance in male paternity. However, we also found that the impact of male mating order on male paternity was influenced by the body size composition of groups. Specifically, males that tended to mate last had a greater paternity advantage, and displayed lower variance, in groups containing a heterogenous mixture male body sizes than in groups with a single male body size. Repetitive mating only had a minor contribution to the variance in male paternity share across all experiments. Overall, our findings contribute to the growing body of research showing that post-copulatory sexual selection is subject to socio-ecological influences.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUK
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsUniversity of Aberdeen, King's CollegeAberdeenUK
| | - Grant C. McDonald
- Department of EcologyUniversity of Veterinary Medicine BudapestBudapestHungary
| | - Stuart Wigby
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary & Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
2
|
Bererhi B, Duchesne P, Schwartz TS, Ujvari B, Wapstra E, Olsson M. Effect of MHC and inbreeding on disassortative reproduction: A data revisit, extension and inclusion of fertilization in sand lizards. Ecol Evol 2023; 13:e9934. [PMID: 36993149 PMCID: PMC10041550 DOI: 10.1002/ece3.9934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
The harmful effects of close inbreeding have been recognized for centuries and, with the rise of Mendelian genetics, was realized to be an effect of homozygosis. This historical background led to great interest in ways to quantify inbreeding, its depression effects on the phenotype and flow‐on effects on mate choice and other aspects of behavioral ecology. The mechanisms and cues used to avoid inbreeding are varied and include major histocompatibility complex (MHC) molecules and the peptides they transport as predictors of the degree of genetic relatedness. Here, we revisit and complement data from a Swedish population of sand lizards (Lacerta agilis) showing signs of inbreeding depression to assess the effects of genetic relatedness on pair formation in the wild. Parental pairs were less similar at the MHC than expected under random mating but mated at random with respect to microsatellite relatedness. MHC clustered in groups of RFLP bands but no partner preference was observed with respect to partner MHC cluster genotype. Male MHC band patterns were unrelated to their fertilization success in clutches selected for analysis on the basis of showing mixed paternity. Thus, our data suggest that MHC plays a role in pre‐copulatory, but not post‐copulatory partner association, suggesting that MHC is not the driver of fertilization bias and gamete recognition in sand lizards.
Collapse
Affiliation(s)
- Badreddine Bererhi
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | | | | | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVictoriaAustralia
| | - Erik Wapstra
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Mats Olsson
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- School of Biological SciencesUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
3
|
Dorsey OC, Rosenthal GG. A taste for the familiar: explaining the inbreeding paradox. Trends Ecol Evol 2023; 38:132-142. [PMID: 36241551 DOI: 10.1016/j.tree.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
The negative consequences of inbreeding have led animal biologists to assume that mate choice is generally biased against relatives. However, inbreeding avoidance is highly variable and by no means the rule across animal taxa. Even when inbreeding is costly, there are numerous examples of animals failing to avoid inbreeding or even preferring to mate with close kin. We argue that selective and mechanistic constraints interact to limit the evolution of inbreeding avoidance, notably when there is a risk of mating with heterospecifics and losing fitness through hybridization. Further, balancing inbreeding avoidance with conspecific mate preference may drive the evolution of multivariate sexual communication. Studying different social and sexual decisions within the same species can illuminate trade-offs among mate-choice mechanisms.
Collapse
Affiliation(s)
- Owen C Dorsey
- Program in Ecology and Evolutionary Biology and Department of Biology, Texas A&M University, TX, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca", Calnali, Hidalgo, Mexico.
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", Calnali, Hidalgo, Mexico; Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Brothers are better than nothing: first report of incestuous mating and inbreeding depression in a freshwater decapod crustacean. ZOOLOGY 2021; 151:125990. [DOI: 10.1016/j.zool.2021.125990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022]
|
5
|
Meta-analytic evidence that animals rarely avoid inbreeding. Nat Ecol Evol 2021; 5:949-964. [PMID: 33941905 DOI: 10.1038/s41559-021-01453-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Animals are usually expected to avoid mating with relatives (kin avoidance) as incestuous mating can lead to the expression of inbreeding depression. Yet, theoretical models predict that unbiased mating with regards to kinship should be common, and that under some conditions, the inclusive fitness benefits associated with inbreeding can even lead to a preference for mating with kin. This mismatch between empirical and theoretical expectations generates uncertainty as to the prevalence of inbreeding avoidance in animals. Here, we synthesized 677 effect sizes from 139 experimental studies of mate choice for kin versus non-kin in diploid animals, representing 40 years of research, using a meta-analytical approach. Our meta-analysis revealed little support for the widely held view that animals avoid mating with kin, despite clear evidence of publication bias. Instead, unbiased mating with regards to kinship appears widespread across animals and experimental conditions. The significance of a variety of moderators was explored using meta-regressions, revealing that the degree of relatedness and prior experience with kin explained some variation in the effect sizes. Yet, we found no difference in kin avoidance between males and females, choice and no-choice experiments, mated and virgin animals or between humans and animals. Our findings highlight the need to rethink the widely held view that inbreeding avoidance is a given in experimental studies.
Collapse
|
6
|
Collet M, Amat I, Sauzet S, Auguste A, Fauvergue X, Mouton L, Desouhant E. Insects and incest: Sib-mating tolerance in natural populations of a parasitoid wasp. Mol Ecol 2020; 29:596-609. [PMID: 31850599 DOI: 10.1111/mec.15340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
Sib-mating avoidance is a pervasive behaviour that is expected to evolve in species subject to inbreeding depression. Although laboratory studies provide elegant demonstrations, small-scaled bioassays minimize the costs of mate finding and choice, and thus may produce spurious findings. We therefore combined laboratory experiments with field observations to examine the existence of inbreeding avoidance using the parasitoid wasp Venturia canescens. In the laboratory, our approach consisted of mate-choice experiments to assess kin discrimination in population cages with competitive interactions. A higher mating probability after sib rejections suggested that females could discriminate their sibs; however, in contrast to previous findings, sib-mating avoidance was not observed. To compare our laboratory results to field data, we captured 241 individuals from two populations. Females laid eggs in the lab, and 226 daughters were obtained. All individuals were genotyped at 18 microsatellite loci, which allowed inference of the genotype of each female's mate and subsequently the relatedness within each mating pair. We found that the observed rate of sib-mating did not differ from the probability that sibs encountered one another at random in the field, which is consistent with an absence of sib-mating avoidance. In addition, we detected a weak but significant male-biased dispersal, which could reduce encounters between sibs. We also found weak fitness costs associated with sib-mating. As such, the sex-biased dispersal that we found is probably sufficient to mitigate these costs. These results imply that kin discrimination has probably evolved for purposes other than mate choice, such as superparasitism avoidance.
Collapse
Affiliation(s)
- Marie Collet
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, CNRS, Université Lyon 1, Univ Lyon, Villeurbanne, France
| | - Isabelle Amat
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, CNRS, Université Lyon 1, Univ Lyon, Villeurbanne, France
| | - Sandrine Sauzet
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, CNRS, Université Lyon 1, Univ Lyon, Villeurbanne, France
| | | | | | - Laurence Mouton
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, CNRS, Université Lyon 1, Univ Lyon, Villeurbanne, France
| | - Emmanuel Desouhant
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, CNRS, Université Lyon 1, Univ Lyon, Villeurbanne, France
| |
Collapse
|
7
|
Geiger AP, Saltz JB. Strong and weak cross‐sex correlations govern the quantitative‐genetic architecture of social group choice in
Drosophila melanogaster. Evolution 2019; 74:145-155. [DOI: 10.1111/evo.13887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Adam P. Geiger
- Rice University 6100 Main Street Houston TX 77005
- Present address: Facebook 300 W 6th St (Lavaca) Austin TX 78701
| | | |
Collapse
|
8
|
Sex peptide receptor-regulated polyandry modulates the balance of pre- and post-copulatory sexual selection in Drosophila. Nat Commun 2019; 10:283. [PMID: 30655522 PMCID: PMC6336784 DOI: 10.1038/s41467-018-08113-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023] Open
Abstract
Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and – as a result – weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophila. Theory predicts that mating systems influence the relative strength of sexual selection before and after mating. Here, Morimoto and colleagues demonstrate that higher polyandry weakens precopulatory while strengthening post-copulatory sexual selection on males in Drosophila melanogaster.
Collapse
|
9
|
|
10
|
|
11
|
Le Page S, Sepil I, Flintham E, Pizzari T, Carazo P, Wigby S. Male relatedness and familiarity are required to modulate male-induced harm to females in Drosophila. Proc Biol Sci 2018; 284:rspb.2017.0441. [PMID: 28794215 PMCID: PMC5563793 DOI: 10.1098/rspb.2017.0441] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/10/2017] [Indexed: 11/12/2022] Open
Abstract
Males compete over mating and fertilization, and often harm females in the process. Inclusive fitness theory predicts that increasing relatedness within groups of males may relax competition and discourage male harm of females as males gain indirect benefits. Recent studies in Drosophila melanogaster are consistent with these predictions, and have found that within-group male relatedness increases female fitness, though others have found no effects. Importantly, these studies did not fully disentangle male genetic relatedness from larval familiarity, so the extent to which modulation of harm to females is explained by male familiarity remains unclear. Here we performed a fully factorial design, isolating the effects of male relatedness and larval familiarity on female harm. While we found no differences in male courtship or aggression, there was a significant interaction between male genetic relatedness and familiarity on female reproduction and survival. Relatedness among males increased female lifespan, reproductive lifespan and overall reproductive success, but only when males were familiar. By showing that both male relatedness and larval familiarity are required to modulate female harm, these findings reconcile previous studies, shedding light on the potential role of indirect fitness effects on sexual conflict and the mechanisms underpinning kin recognition in fly populations.
Collapse
Affiliation(s)
- Sally Le Page
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Irem Sepil
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Ewan Flintham
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Pau Carazo
- Behaviour, Ecology and Evolution group, Instituto Cavanilles of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Duthie AB, Bocedi G, Germain RR, Reid JM. Evolution of precopulatory and post-copulatory strategies of inbreeding avoidance and associated polyandry. J Evol Biol 2018; 31:31-45. [PMID: 28986951 PMCID: PMC5765502 DOI: 10.1111/jeb.13189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/16/2023]
Abstract
Inbreeding depression is widely hypothesized to drive adaptive evolution of precopulatory and post-copulatory mechanisms of inbreeding avoidance, which in turn are hypothesized to affect evolution of polyandry (i.e. female multiple mating). However, surprisingly little theory or modelling critically examines selection for precopulatory or post-copulatory inbreeding avoidance, or both strategies, given evolutionary constraints and direct costs, or examines how evolution of inbreeding avoidance strategies might feed back to affect evolution of polyandry. Selection for post-copulatory inbreeding avoidance, but not for precopulatory inbreeding avoidance, requires polyandry, whereas interactions between precopulatory and post-copulatory inbreeding avoidance might cause functional redundancy (i.e. 'degeneracy') potentially generating complex evolutionary dynamics among inbreeding strategies and polyandry. We used individual-based modelling to quantify evolution of interacting precopulatory and post-copulatory inbreeding avoidance and associated polyandry given strong inbreeding depression and different evolutionary constraints and direct costs. We found that evolution of post-copulatory inbreeding avoidance increased selection for initially rare polyandry and that evolution of a costly inbreeding avoidance strategy became negligible over time given a lower-cost alternative strategy. Further, fixed precopulatory inbreeding avoidance often completely precluded evolution of polyandry and hence post-copulatory inbreeding avoidance, but fixed post-copulatory inbreeding avoidance did not preclude evolution of precopulatory inbreeding avoidance. Evolution of inbreeding avoidance phenotypes and associated polyandry is therefore affected by evolutionary feedbacks and degeneracy. All else being equal, evolution of precopulatory inbreeding avoidance and resulting low polyandry is more likely when post-copulatory inbreeding avoidance is precluded or costly, and evolution of post-copulatory inbreeding avoidance greatly facilitates evolution of costly polyandry.
Collapse
Affiliation(s)
- A. B. Duthie
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - G. Bocedi
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenUK
| | - R. R. Germain
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenUK
| | - J. M. Reid
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
13
|
Bouchebti S, Durier V, Pasquaretta C, Rivault C, Lihoreau M. Subsocial Cockroaches Nauphoeta cinerea Mate Indiscriminately with Kin Despite High Costs of Inbreeding. PLoS One 2016; 11:e0162548. [PMID: 27655156 PMCID: PMC5031396 DOI: 10.1371/journal.pone.0162548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022] Open
Abstract
Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition.
Collapse
Affiliation(s)
- Sofia Bouchebti
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Virginie Durier
- CNRS UMR 6552 Ethologie Animale et Humaine, Université de Rennes 1, Avenue du Général Leclerc, Rennes, France
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Colette Rivault
- CNRS UMR 6552 Ethologie Animale et Humaine, Université de Rennes 1, Avenue du Général Leclerc, Rennes, France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
14
|
Developmental Environment Effects on Sexual Selection in Male and Female Drosophila melanogaster. PLoS One 2016; 11:e0154468. [PMID: 27167120 PMCID: PMC4864243 DOI: 10.1371/journal.pone.0154468] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/13/2016] [Indexed: 11/19/2022] Open
Abstract
The developmental environment can potentially alter the adult social environment and influence traits targeted by sexual selection such as body size. In this study, we manipulated larval density in male and female Drosophila melanogaster, which results in distinct adult size phenotypes–high (low) densities for small (large) adults–and measured sexual selection in experimental groups consisting of adult males and females from high, low, or a mixture of low and high larval densities. Overall, large adult females (those reared at low larval density) had more matings, more mates and produced more offspring than small females (those reared at high larval density). The number of offspring produced by females was positively associated with their number of mates (i.e. there was a positive female Bateman gradient) in social groups where female size was experimentally varied, likely due to the covariance between female productivity and mating rate. For males, we found evidence that the larval environment affected the relative importance of sexual selection via mate number (Bateman gradients), mate productivity, paternity share, and their covariances. Mate number and mate productivity were significantly reduced for small males in social environments where males were of mixed sizes, versus social environments where all males were small, suggesting that social heterogeneity altered selection on this subset of males. Males are commonly assumed to benefit from mating with large females, but in contrast to expectations we found that in groups where both the male and female size varied, males did not gain more offspring per mating with large females. Collectively, our results indicate sex-specific effects of the developmental environment on the operation of sexual selection, via both the phenotype of individuals, and the phenotype of their competitors and mates.
Collapse
|
15
|
Müller T, Müller C. Consequences of mating with siblings and nonsiblings on the reproductive success in a leaf beetle. Ecol Evol 2016; 6:3185-97. [PMID: 27103986 PMCID: PMC4829044 DOI: 10.1002/ece3.2103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 11/22/2022] Open
Abstract
Choosing a suitable mating partner is crucial for the fitness of an individual, whereby mating with siblings often results in inbreeding depression. We studied consequences of mating with siblings versus nonsiblings in the mustard leaf beetle, Phaedon cochleariae (Coleoptera: Chrysomelidae), on lifetime reproductive traits. Furthermore, we analyzed whether cuticular hydrocarbon (CHC) profiles are family specific and could potentially influence the mating behavior of young adults. We hypothesized a reduced reproductive success of females mated with siblings and a more rapid mating of males with nonsiblings. The hatching rate from eggs of sibling pairs was lower compared to that of nonsibling pairs, pointing to inbreeding depression. Furthermore, the number of eggs laid by females decreased over time in both sibling and nonsibling pairs. Interestingly, the CHC profiles and the body mass differed between families. However, the beetles did not avoid siblings and accepted them as readily as nonsiblings for mating in no‐choice tests. In summary, although it had negative consequences to mate a sibling and although siblings could potentially be recognized by their CHC profiles, the beetles did not show a delayed mating with siblings. Our results indicate that P. cochleariae beetles have not developed a precopulatory mechanism to avoid inbreeding, at least under the test conditions applied here. We predict that instead a polyandrous mating system and/or postcopulatory mechanisms might have evolved in this species by which inbreeding costs can be reduced.
Collapse
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology Bielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
16
|
Reid JM, Arcese P, Bocedi G, Duthie AB, Wolak ME, Keller LF. Resolving the conundrum of inbreeding depression but no inbreeding avoidance: Estimating sex-specific selection on inbreeding by song sparrows (Melospiza melodia). Evolution 2015; 69:2846-61. [PMID: 26420476 PMCID: PMC5057356 DOI: 10.1111/evo.12780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 11/29/2022]
Abstract
Inbreeding avoidance among interacting females and males is not always observed despite inbreeding depression in offspring fitness, creating an apparent "inbreeding paradox." This paradox could be resolved if selection against inbreeding was in fact weak, despite inbreeding depression. However, the net magnitude and direction of selection on the degree to which females and males inbreed by pairing with relatives has not been explicitly estimated. We used long-term pedigree data to estimate phenotypic selection gradients on the degree of inbreeding that female and male song sparrows (Melospiza melodia) expressed by forming socially persistent breeding pairs with relatives. Fitness was measured as the total numbers of offspring and grand offspring contributed to the population, and as corresponding expected numbers of identical-by-descent allele copies, thereby accounting for variation in offspring survival, reproduction, and relatedness associated with variation in parental inbreeding. Estimated selection gradients on the degree to which individuals paired with relatives were weakly positive in females, but negative in males that formed at least one socially persistent pairing. However, males that paired had higher mean fitness than males that remained socially unpaired. These analyses suggest that net selection against inbreeding may be weak in both sexes despite strong inbreeding depression, thereby resolving the "inbreeding paradox."
Collapse
Affiliation(s)
- Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland.
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Greta Bocedi
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland
| | - A Bradley Duthie
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland
| | - Matthew E Wolak
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland
| | - Lukas F Keller
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
17
|
Dolphin K, Carter A. Inbreeding decreases promiscuity in Drosophila melanogasterfemales. ETHOL ECOL EVOL 2015. [DOI: 10.1080/03949370.2015.1039466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Duthie AB, Reid JM. What happens after inbreeding avoidance? Inbreeding by rejected relatives and the inclusive fitness benefit of inbreeding avoidance. PLoS One 2015; 10:e0125140. [PMID: 25909185 PMCID: PMC4409402 DOI: 10.1371/journal.pone.0125140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
Avoiding inbreeding, and therefore avoiding inbreeding depression in offspring fitness, is widely assumed to be adaptive in systems with biparental reproduction. However, inbreeding can also confer an inclusive fitness benefit stemming from increased relatedness between parents and inbred offspring. Whether or not inbreeding or avoiding inbreeding is adaptive therefore depends on a balance between inbreeding depression and increased parent-offspring relatedness. Existing models of biparental inbreeding predict threshold values of inbreeding depression above which males and females should avoid inbreeding, and predict sexual conflict over inbreeding because these thresholds diverge. However, these models implicitly assume that if a focal individual avoids inbreeding, then both it and its rejected relative will subsequently outbreed. We show that relaxing this assumption of reciprocal outbreeding, and the assumption that focal individuals are themselves outbred, can substantially alter the predicted thresholds for inbreeding avoidance for focal males. Specifically, the magnitude of inbreeding depression below which inbreeding increases a focal male’s inclusive fitness increases with increasing depression in the offspring of a focal female and her alternative mate, and it decreases with increasing relatedness between a focal male and a focal female’s alternative mate, thereby altering the predicted zone of sexual conflict. Furthermore, a focal male’s inclusive fitness gain from avoiding inbreeding is reduced by indirect opportunity costs if his rejected relative breeds with another relative of his. By demonstrating that variation in relatedness and inbreeding can affect intra- and inter-sexual conflict over inbreeding, our models lead to novel predictions for family dynamics. Specifically, parent-offspring conflict over inbreeding might depend on the alternative mates of rejected relatives, and male-male competition over inbreeding might lead to mixed inbreeding strategies. Making testable quantitative predictions regarding inbreeding strategies occurring in nature will therefore require new models that explicitly capture variation in relatedness and inbreeding among interacting population members.
Collapse
Affiliation(s)
- A. Bradley Duthie
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| | - Jane M. Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
19
|
Fitzpatrick JL, Evans JP. Postcopulatory inbreeding avoidance in guppies. J Evol Biol 2014; 27:2585-94. [PMID: 25387854 DOI: 10.1111/jeb.12545] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
Abstract
In many species, the negative fitness effects of inbreeding have facilitated the evolution of a wide range of inbreeding avoidance mechanisms. Although avoidance mechanisms operating prior to mating are well documented, evidence for postcopulatory mechanisms of inbreeding avoidance remain scarce. Here, we examine the potential for paternity biases to favour unrelated males when their sperm compete for fertilizations though postcopulatory inbreeding avoidance mechanisms in the guppy, Poecilia reticulata. To test this possibility, we used a series of artificial inseminations to deliver an equal number of sperm from a related (either full sibling or half sibling) and unrelated male to a female while statistically controlling for differences in sperm quality between rival ejaculates. In this way, we were able to focus exclusively on postcopulatory mechanisms of inbreeding avoidance and account for differences in sperm competitiveness between rival males. Under these carefully controlled conditions, we report a significant bias in paternity towards unrelated males, although this effect was only apparent when the related male was a full sibling. We also show that sperm competition generally favours males with highly viable sperm and thus that some variance in sperm competitiveness can be attributed to difference in sperm quality. Our findings for postcopulatory inbreeding avoidance are consistent with prior work on guppies, revealing that sperm competition success declines linearly with the level of relatedness, but also that such effects are only apparent at relatedness levels of full siblings or higher. These findings reveal that postcopulatory processes alone can facilitate inbreeding avoidance.
Collapse
Affiliation(s)
- J L Fitzpatrick
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK; Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
20
|
Ala-Honkola O, Veltsos P, Anderson H, Ritchie MG. Copulation duration, but not paternity share, potentially mediates inbreeding avoidance in Drosophila montana. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
McKee AA, Newton SM, Carter AJR. Influence of Inbreeding on Female Mate Choice in Two Species of Drosophila. JOURNAL OF INSECT BEHAVIOR 2014; 27:613-625. [PMID: 29225418 PMCID: PMC5718203 DOI: 10.1007/s10905-014-9453-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many organisms have been reported to choose their mates in order to increase the heterozygosity of their offspring by avoiding mating with relatives or homozygous individuals. Most previous studies using Drosophila melanogaster have used artificial chromosomes or extreme inbreeding treatments, situations unlikely to be matched in nature. Additionally, few studies have examined the interaction between female inbreeding status and her choice of mate. Using females and males from populations that had experienced either random mating or one generation of sib-sib inbreeding, we measured the preferences of females for males. Our results indicate that outbred males were chosen more often than inbred males and that this preference may be more pronounced in outbred females than in inbred ones.
Collapse
Affiliation(s)
- Amberle A McKee
- Department of Biological Sciences, California State University Long Beach, Hall of Science 104 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| | - Shanna M Newton
- Department of Biological Sciences, California State University Long Beach, Hall of Science 104 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| | - Ashley J R Carter
- Department of Biological Sciences, California State University Long Beach, Hall of Science 104 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| |
Collapse
|
22
|
Laturney M, Billeter JC. Neurogenetics of female reproductive behaviors in Drosophila melanogaster. ADVANCES IN GENETICS 2014; 85:1-108. [PMID: 24880733 DOI: 10.1016/b978-0-12-800271-1.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We follow an adult Drosophila melanogaster female through the major reproductive decisions she makes during her lifetime, including habitat selection, precopulatory mate choice, postcopulatory physiological changes, polyandry, and egg-laying site selection. In the process, we review the molecular and neuronal mechanisms allowing females to integrate signals from both environmental and social sources to produce those behavioral outputs. We pay attention to how an understanding of D. melanogaster female reproductive behaviors contributes to a wider understanding of evolutionary processes such as pre- and postcopulatory sexual selection as well as sexual conflict. Within each section, we attempt to connect the theories that pertain to the evolution of female reproductive behaviors with the molecular and neurobiological data that support these theories. We draw attention to the fact that the evolutionary and mechanistic basis of female reproductive behaviors, even in a species as extensively studied as D. melanogaster, remains poorly understood.
Collapse
Affiliation(s)
- Meghan Laturney
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Lizé A, McKay R, Lewis Z. Kin recognition in Drosophila: the importance of ecology and gut microbiota. ISME JOURNAL 2013; 8:469-77. [PMID: 24030598 DOI: 10.1038/ismej.2013.157] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/27/2013] [Accepted: 08/06/2013] [Indexed: 11/09/2022]
Abstract
The animal gut commonly contains a large reservoir of symbiotic microbes. Although these microbes have obvious functions in digestion and immune defence, gut microbes can also affect behaviour. Here, we explore whether gut microbiota has a role in kin recognition. We assessed whether relatedness, familiarity and food eaten during development altered copulation investment in three species of Drosophila with diverse ecologies. We found that a monandrous species exhibited true kin recognition, whereas familiarity determined kin recognition in a species living in dense aggregations. Finally, in a food generalist species, food eaten during development masked kin recognition. The effect of food type on copulation duration, in addition to the removal of this effect via antibiotic treatment, suggests the influence of bacteria associated with the gut. Our results provide the first evidence that varied ecologically determined mechanisms of kin recognition occur in Drosophila, and that gut bacteria are likely to have a key role in these mechanisms.
Collapse
Affiliation(s)
- Anne Lizé
- Department Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Raegan McKay
- Department Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Zenobia Lewis
- Department Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
24
|
|