1
|
Potticary AL, Belk MC, Creighton JC, Ito M, Kilner R, Komdeur J, Royle NJ, Rubenstein DR, Schrader M, Shen S, Sikes DS, Smiseth PT, Smith R, Steiger S, Trumbo ST, Moore AJ. Revisiting the ecology and evolution of burying beetle behavior (Staphylinidae: Silphinae). Ecol Evol 2024; 14:e70175. [PMID: 39170054 PMCID: PMC11336061 DOI: 10.1002/ece3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Investigating fundamental processes in biology requires the ability to ground broad questions in species-specific natural history. This is particularly true in the study of behavior because an organism's experience of the environment will influence the expression of behavior and the opportunity for selection. Here, we provide a review of the natural history and behavior of burying beetles of the genus Nicrophorus to provide the groundwork for comparative work that showcases their remarkable behavioral and ecological diversity. Burying beetles have long fascinated scientists because of their well-developed parenting behavior, exhibiting extended post-hatching care of offspring that varies extensively within and across taxa. Despite the burgeoning success of burying beetles as a model system for the study of behavioral evolution, there has not been a review of their behavior, ecology, and evolution in over 25 years. To address this gap, we leverage a developing community of researchers who have contributed to a detailed knowledge of burying beetles to highlight the utility of Nicrophorus for investigating the causes and consequences of social and behavioral evolution.
Collapse
Affiliation(s)
- Ahva L. Potticary
- Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark C. Belk
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - J. Curtis Creighton
- Department of Biological SciencesPurdue University NorthwestHammondIndianaUSA
| | - Minobu Ito
- Department of Environmental ScienceToho UniversityFunabashiChibaJapan
| | | | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nick J. Royle
- Centre for Ecology and Conservation, Faculty of Environment, Science & the EconomyUniversity of ExeterCornwallUK
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew York CityNew YorkUSA
| | - Matthew Schrader
- Department of BiologySewanee, The University of the SouthSewaneeTennesseeUSA
| | | | - Derek S. Sikes
- University of Alaska Museum and Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Per T. Smiseth
- Institute of Ecology and EvolutionThe University of EdinburghEdinburghUK
| | - Rosemary Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Stephen T. Trumbo
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutWaterburyConnecticutUSA
| | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Burke KW, Groulx AF, Martin PR. The competitive exclusion-tolerance rule explains habitat partitioning among co-occurring species of burying beetles. Ecology 2024; 105:e4208. [PMID: 37948189 DOI: 10.1002/ecy.4208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
Habitat partitioning among co-occurring, ecologically similar species is widespread in nature and thought to be an important mechanism for coexistence. The factors that cause habitat partitioning, however, are unknown for most species. We experimentally tested among three alternative hypotheses to explain habitat partitioning among two species of co-occurring burying beetle (Nicrophorus) that occupy forest (Nicrophorus orbicollis) and wetland (Nicrophorus hebes) habitats. Captive experiments revealed that the larger N. orbicollis (forest) was consistently dominant to N. hebes (wetland) in competitive interactions for carcasses that they require for reproduction. Transplant enclosure experiments in nature revealed that N. hebes had poor reproductive success whenever the dominant N. orbicollis was present. In the absence of N. orbicollis, N. hebes performed as well, or better, in forest versus its typical wetland habitat. In contrast, N. orbicollis performed poorly in wetlands regardless of the presence of N. hebes. These results support the competitive exclusion-tolerance rule where the competitively dominant N. orbicollis excludes the subordinate N. hebes from otherwise suitable or preferable forest habitat, while the subordinate N. hebes is uniquely able to tolerate the challenges of breeding in wetlands. Transplant experiments further showed that carcass burial depth-an important trait thought to enhance the competitive ability of the dominant N. orbicollis-is costly in wetland habitats. In the presence of N. hebes, N. orbicollis buried carcasses deeper; deeper burial is thought to provide a competitive advantage in forests but further compromised the reproductive success of N. orbicollis in wetlands. Overall, results provide evidence that the competitive exclusion-tolerance rule underlies habitat partitioning among ecologically similar species and that the traits important for competitive dominance in relatively benign environments are costly in more challenging environments, consistent with a trade-off.
Collapse
Affiliation(s)
- Kevin W Burke
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Adam F Groulx
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Paul R Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Perrin W, Fontana S, Coq S, Berlioz L, Jay-Robert P, Moretti M. The Influence of Fine-Scale Grazing Heterogeneity on Dung Beetle Assemblages: What Trait Analysis Teaches Us. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1332-1343. [PMID: 34580707 DOI: 10.1093/ee/nvab091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Livestock grazing puts major anthropogenic pressure on biological communities worldwide. Not all species are expected to be affected in the same way, and the impacts will depend on species' traits. Focusing on traits thus helps identify the mechanisms underlying changes in community composition under grazing pressures. We investigated how fine-scale grazing heterogeneity affects the trait composition and diversity of dung beetle assemblages in Western Europe. We sampled dung beetles in habitat patches differing in terms of grazing intensity within rangelands of two distinct biogeographical areas: a Mediterranean lowland steppe and Western alpine meadows. We measured five morphological traits expected to respond to the local-scale filtering pressure exerted by variations in grazing intensity. Using individual-based data, we assessed responses in terms of single-trait mean values in communities and complementary trait diversity indices. We found strong shifts in trait composition and diversity between the habitat patches. In both study areas, variations in habitat conditions are likely to have filtered the local occurrence and abundance of dung beetles by the mean of traits such as body mass (which have several functional implications), as well as traits linked to underground activity. We hypothesize that fine-scale variation in resource availability (i.e., droppings) and disturbance intensity (i.e., trampling) are key drivers of the observed patterns in species assemblages. Trait richness peaks at moderate grazing intensity in both study areas, suggesting that patches with an intermediated level of available resources and soil disturbance enable individuals with a greater range of autecological requirements to coexist.
Collapse
Affiliation(s)
- William Perrin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Simone Fontana
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Sylvain Coq
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Laurent Berlioz
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Pierre Jay-Robert
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Marco Moretti
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Burke K, Wettlaufer J, Beresford D, Martin P. Habitat use of co-occurring burying beetles (genus Nicrophorus) in southeastern Ontario, Canada. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The coexistence of closely related species plays an important role in shaping local diversity. However, competition for shared resources can limit the ability of species to coexist. Many species avoid the costs of coexistence by diverging in habitat use, known as habitat partitioning. We examine patterns of habitat use in seven co-occurring species of burying beetles (genus Nicrophorus Fabricius, 1775), testing the hypothesis that Nicrophorus species partition resources by occupying distinct habitats. We surveyed Nicrophorus abundance and 54 habitat characteristics at 100 random sites spanning an environmentally diverse region of southeastern Ontario, Canada. We found that three species occupied distinct habitat types consistent with habitat partitioning. Specifically, Nicrophorus pustulatus Herschel, 1807, Nicrophorus hebes Kirby, 1837, and Nicrophorus marginatus Fabricius, 1801 appear to be specialists for forest canopy, wetlands, and open fields, respectively. In contrast, Nicrophorus orbicollis Say, 1825, Nicrophorus sayi Laporte, 1840, and Nicrophorus tomentosus Weber, 1801 appear to be generalists with wide breadths of habitat use. We were unable to identify the habitat associations of Nicrophorus defodiens Mannerheim, 1846. Our findings are consistent with habitat acting as an important resource axis along which some Nicrophorus species partition; however, divergence along other resource axes (e.g., temporal partitioning) also appears important for Nicrophorus coexistence.
Collapse
Affiliation(s)
- K.W. Burke
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6, Canada
| | - J.D. Wettlaufer
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6, Canada
| | - D.V. Beresford
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| | - P.R. Martin
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Hu JR, Xie C, Shi CH, Wang SL, Wu QJ, Li CR, Zhang YJ. Effect of Sex and Air Temperature on the Flight Capacity of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2161-2166. [PMID: 31165857 DOI: 10.1093/jee/toz152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Bradysia odoriphaga Yang & Zhang (Diptera: Sciaridae) is an important pest of Chinese chives. Information on the effects of biotic and abiotic factors on the flight performance of B. odoriphaga is crucial for understanding the pest's ability to disperse and migrate. In this study, the effects of sex and air temperature on the flight performance of B. odoriphaga imagoes were assessed by tethering individual imagoes to computerized flight mills for a 10-h experiment. The results showed that the percentage of imagoes that flew a particular distance gradually decreased as flight distance increased. The percentage of imagoes was significantly higher for males than females when the flight distance was <300 m. Sex and air temperature significantly affected average flight time (which ranged from 14.6 to 68.3 min) and average flight distance (which ranged from 10.4 to 107.2 m), but did not significantly affect average flight speed (which ranged from 3.8 to 6.4 m/min). For both females and males, the average flight distance and flight time were shortest at 18°C and longest at 22°C; the interaction between air temperature and sex was not significant. The results suggest that B. odoriphaga has a poor potential for long-distance migration. These findings will be helpful for developing forecasting and management systems for B. odoriphaga.
Collapse
Affiliation(s)
- Jing-Rong Hu
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Chao Xie
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Cai-Hua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Shao-Li Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| | - Qing-Jun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| | - Chuan-Ren Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| |
Collapse
|
6
|
Chen Z, Corlett RT, Jiao X, Liu SJ, Charles-Dominique T, Zhang S, Li H, Lai R, Long C, Quan RC. Prolonged milk provisioning in a jumping spider. Science 2019; 362:1052-1055. [PMID: 30498127 DOI: 10.1126/science.aat3692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/29/2018] [Indexed: 11/02/2022]
Abstract
Lactation is a mammalian attribute, and the few known nonmammal examples have distinctly different modalities. We document here milk provisioning in a jumping spider, which compares functionally and behaviorally to lactation in mammals. The spiderlings ingest nutritious milk droplets secreted from the mother's epigastric furrow until the subadult stage. Milk is indispensable for offspring survival in the early stages and complements their foraging in later stages. Maternal care, as for some long-lived vertebrates, continues after the offspring reach maturity. Furthermore, a female-biased adult sex ratio is acquired only when the mother is present. These findings demonstrate that mammal-like milk provisioning and parental care for sexually mature offspring have also evolved in invertebrates, encouraging a reevaluation of their occurrence across the animal kingdom, especially in invertebrates.
Collapse
Affiliation(s)
- Zhanqi Chen
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Xiaoguo Jiao
- Center for Behavioral Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sheng-Jie Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Tristan Charles-Dominique
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Shichang Zhang
- Center for Behavioral Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huan Li
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Ren Lai
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Chengbo Long
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Rui-Chang Quan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China.
| |
Collapse
|
7
|
He HM, Xiao HJ, Xue FS. Parental effect of diapause in relation to photoperiod and temperature in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:773-780. [PMID: 29397053 DOI: 10.1017/s0007485318000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increasing evidence has demonstrated that the environmental conditions experienced by parents can shape offspring phenotypes. Here, we examined the effects of the photoperiod and temperature experienced by parents on the incidence of diapause in their progeny in the cabbage beetle, Colaphellus bowringi, using three experiments. The first experiment examined parental diapause incidence under different photoperiods at 25°C and the incidence of diapause in progeny from both non-diapausing and diapausing parents under the same rearing conditions. The results revealed that the incidence of diapause among progeny was exactly opposite to that of their parents, i.e., higher parental diapause incidence led to lower progeny diapause incidence, showing a negative relationship in diapause incidence between the parental generation and the progeny generation. The incidence of diapause among progeny produced by diapausing parents was higher than that in progeny produced by non-diapausing parents. The second experiment examined parental diapause incidence at different temperatures under LD 12:12 and the incidence of diapause in progeny from both non-diapausing and diapausing parents under the same rearing conditions. Similarly, the incidence of diapause in progeny was also opposite to that of their parents. However, the incidence of diapause in progeny produced by non-diapausing parents was different from that in progeny produced by diapausing parents. In the third experiment, naturally diapausing adults were maintained at a constant temperature of 9, 28°C or the mean daily summer temperature of 27.84°C under continuous darkness for 3 months of dormancy. After dormancy, the progeny of these post-diapause parents were reared under different photoperiods at 25°C. The results showed that the incidence of diapause among progeny was higher when their parents experienced high temperatures than when they experienced low temperatures. All results demonstrate that the photoperiod and temperature experienced by parents may significantly affect the diapause incidence among progeny.
Collapse
Affiliation(s)
- H-M He
- Institute of Entomology, Jiangxi Agricultural University Nanchang,330045,China
| | - H-J Xiao
- Institute of Entomology, Jiangxi Agricultural University Nanchang,330045,China
| | - F-S Xue
- Institute of Entomology, Jiangxi Agricultural University Nanchang,330045,China
| |
Collapse
|
8
|
Tomberlin JK, Barton BT, Lashley MA, Jordan HR. Mass mortality events and the role of necrophagous invertebrates. CURRENT OPINION IN INSECT SCIENCE 2017; 23:7-12. [PMID: 29129285 DOI: 10.1016/j.cois.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Scale is important in understanding and applying concepts in ecology. Historically, the mechanisms regulating necrophagous arthropod community structure have been well explored on a single vertebrate carcass. However, practically nothing is known of whether such findings can be extrapolated to cases where large numbers of carcasses have been introduced into an ecosystem at a single time point. With the increasing incidences of mass mortality events (MMEs), understanding how scale effects community assembly of necrophagous insects and the resulting bottom-up or top-down effects on the impacted ecosystem are of utmost importance. Unfortunately, MMEs are unpredictable, making their study nearly impossible within a robust experimental framework. The objectives of this paper are to provide a brief overview of what is known with regards to ecological responses to carrion, opine on the ramifications of MMEs on local communities, and provide a brief overview of knowledge gaps, avenues for future research, and a potential study systems for rigorous MME experiments.
Collapse
Affiliation(s)
| | - Brandon T Barton
- Department of Biological Sciences, Mississippi State University, United States
| | - Marcus A Lashley
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, United States
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, United States
| |
Collapse
|
9
|
Outomuro D, Johansson F. A potential pitfall in studies of biological shape: Does size matter? J Anim Ecol 2017; 86:1447-1457. [PMID: 28699246 DOI: 10.1111/1365-2656.12732] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 01/26/2023]
Abstract
The number of published studies using geometric morphometrics (GM) for analysing biological shape has increased steadily since the beginning of the 1990s, covering multiple research areas such as ecology, evolution, development, taxonomy and palaeontology. Unfortunately, we have observed that many published studies using GM do not evaluate the potential allometric effects of size on shape, which normally require consideration or assessment. This might lead to misinterpretations and flawed conclusions in certain cases, especially when size effects explain a large part of the shape variation. We assessed, for the first time and in a systematic manner, how often published studies that have applied GM consider the potential effects of allometry on shape. We reviewed the 300 most recent published papers that used GM for studying biological shape. We also estimated how much of the shape variation was explained by allometric effects in the reviewed papers. More than one-third (38%) of the reviewed studies did not consider the allometric component of shape variation. In studies where the allometric component was taken into account, it was significant in 88% of the cases, explaining up to 87.3% of total shape variation. We believe that one reason that may cause the observed results is a misunderstanding of the process that superimposes landmark configurations, i.e. the Generalized Procrustes Analysis, which removes isometric effects of size on shape, but not allometric effects. Allometry can be a crucial component of shape variation. We urge authors to address, and report, size effects in studies of biological shape. However, we do not propose to always remove size effects, but rather to evaluate the research question with and without the allometric component of shape variation. This approach can certainly provide a thorough understanding of how much size contributes to the observed shaped variation.
Collapse
Affiliation(s)
- David Outomuro
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Frank Johansson
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Pascoal S, Kilner RM. Development and application of 14 microsatellite markers in the burying beetle Nicrophorus vespilloides reveals population genetic differentiation at local spatial scales. PeerJ 2017; 5:e3278. [PMID: 28480146 PMCID: PMC5417058 DOI: 10.7717/peerj.3278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/06/2017] [Indexed: 11/20/2022] Open
Abstract
Burying beetles (genus Nicrophorus) are relatively rare among insects in providing sophisticated parental care. Consequently, they have become model species in research analysing social evolution, the evolution of parental care and mating systems. We used the recently published N. vespilloides genome and transcriptome to develop microsatellite markers. Specifically, we developed 14 polymorphic markers with five to 13 alleles per locus and used them to investigate levels of genetic differentiation in four south Cambridgeshire (UK) populations of N. vespilloides, separated by 21 km at most. The markers revealed significant genetic structuring among populations (global FST = 0.023) with all but one of the pairwise comparisons among populations being significant. The single exception was the comparison between the two closest populations, which are approximately 2.5 km apart. In general, the microsatellite markers showed lower observed heterozygosity than expected. We infer that there is limited dispersal between populations and potentially also some inbreeding within them and suggest that this may be due to habitat fragmentation. We discuss these results in the context of recent laboratory experiments on inbreeding and beetle flight.
Collapse
Affiliation(s)
- Sonia Pascoal
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca M Kilner
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Kilner RM, Boncoraglio G, Henshaw JM, Jarrett BJM, De Gasperin O, Attisano A, Kokko H. Parental effects alter the adaptive value of an adult behavioural trait. eLife 2015; 4:e07340. [PMID: 26393686 PMCID: PMC4613925 DOI: 10.7554/elife.07340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/14/2015] [Indexed: 01/15/2023] Open
Abstract
The parents' phenotype, or the environment they create for their young, can have long-lasting effects on their offspring, with profound evolutionary consequences. Yet, virtually no work has considered how such parental effects might change the adaptive value of behavioural traits expressed by offspring upon reaching adulthood. To address this problem, we combined experiments on burying beetles (Nicrophorus vespilloides) with theoretical modelling and focussed on one adult behavioural trait in particular: the supply of parental care. We manipulated the early-life environment and measured the fitness payoffs associated with the supply of parental care when larvae reached maturity. We found that (1) adults that received low levels of care as larvae were less successful at raising larger broods and suffered greater mortality as a result: they were low-quality parents. Furthermore, (2) high-quality males that raised offspring with low-quality females subsequently suffered greater mortality than brothers of equivalent quality, which reared larvae with higher quality females. Our analyses identify three general ways in which parental effects can change the adaptive value of an adult behavioural trait: by influencing the associated fitness benefits and costs; by consequently changing the evolutionary outcome of social interactions; and by modifying the evolutionarily stable expression of behavioural traits that are themselves parental effects. DOI:http://dx.doi.org/10.7554/eLife.07340.001 The burying beetle is an unusual insect in that both the father and the mother take care of their young larvae. They do this by providing food in the form of a small dead animal, such as a mouse, from which they diligently remove any fur or feathers, and by defending both the food and the larvae from rivals. These actions reduce the fitness of the parents, which can be estimated by measuring by how long they survive after caring for their brood. They also increase the health of the larvae, as measured by how large the larvae are when they move away from the carcass to pupate. Kilner et al. wanted to know how the parenting received by larvae affects their behaviour when they grow up and have their own offspring. Larvae were given varying amounts of care, ranging from none at all to five days (which is the typical length of the larval stage for burying beetles). Larvae that received little or no care grew up to become low-quality parents, whereas those that received lots of care became high-quality parents. A low-quality parent is, by definition, a parent that becomes less fit as a result of rearing offspring; a high-quality parent providing the same amount of care would not suffer such a large reduction in its fitness. Each of the female beetles from this first experiment was then mated with a high-quality male and together they took care of their offspring. Kilner et al. observed that the fathers lived longer when they were paired with high-quality mothers than they did when they were paired with lower quality mothers. This happened because the lower quality mothers effectively exploited the fathers, forcing them to do more of the parenting. Although the males gained by raising healthy larvae, they paid a price by dying at a younger age. Results from these insect experiments are not directly linked to human behaviour, but they might tell us why animals of other species are generally so careful to choose a mate that matches them in quality. In this way, they can avoid being exploited when the pair work together to raise young. In future, Kilner et al. will investigate how beetles adjust their parenting effort in response to the effort put in by their partner: can they estimate parental quality directly, or do they simply observe how much care the other partner is providing? DOI:http://dx.doi.org/10.7554/eLife.07340.002
Collapse
Affiliation(s)
- Rebecca M Kilner
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Jonathan M Henshaw
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Ornela De Gasperin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Alfredo Attisano
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Kokko
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|