1
|
Show me your best side: Lateralization of social and resting behaviors in feral horses. Behav Processes 2023; 206:104839. [PMID: 36736386 DOI: 10.1016/j.beproc.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Growing evidence shows a variety of sensorial and motor asymmetries in social and non-social interactions in various species, indicating a lateralized processing of information by the brain. Using digital video cameras on tripods and drones, this study investigated lateralization in frequency and duration of social behavior patterns, in affiliative, agonistic, and resting contexts, in a feral population of horses (Equus ferus caballus) in Northern Portugal, consisting of 37 individuals organized in eight harem groups. Affiliative interactions (including grooming) were more often performed, and lasted longer, when recipients were positioned to the right side. In recumbent resting (animals lying down) episodes on the left side lasted longer. Our results of an affiliative behavior having a right side tendency, provide partial support to the valence-specific hypothesis of Ahern and Schwartz (1979) - left hemisphere dominance for positive affect, affiliative behaviors. Longer recumbent resting episodes on the left side may be due to synchronization. However, in both instances it is discussed how lateralization may be context dependent. Investigating the position asymmetries of social behaviors in feral equids will contribute to a better understanding of differential lateralization and hemispheric specialization from the ecological and evolutionary perspectives.
Collapse
|
2
|
Giljov A, Karenina K. Positional biases in social behaviors: Humans vs. saiga antelopes. Front Behav Neurosci 2023; 16:1103584. [PMID: 36699656 PMCID: PMC9868156 DOI: 10.3389/fnbeh.2022.1103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Andrey Giljov
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, St. Petersburg, Russia
| | - Karina Karenina
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
3
|
Soma M. Behavioral and Evolutionary Perspectives on Visual Lateralization in Mating Birds: A Short Systematic Review. Front Physiol 2022; 12:801385. [PMID: 35173624 PMCID: PMC8841733 DOI: 10.3389/fphys.2021.801385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
The division of cognitive processing between the two hemispheres of the brain causes lateralized eye use in various behavioral contexts. Generally, visual lateralization is shared among vertebrates to a greater extent, with little interspecific variation. However, previous studies on the visual lateralization in mating birds have shown surprising heterogeneity. Therefore, this systematic review paper summarized and analyzed them using phylogenetic comparative methods. The review aimed to elucidate why some species used their left eye and others their right to fixate on individuals of the opposite sex, such as mating partners or prospective mates. It was found that passerine and non-passerine species showed opposite eye use for mating, which could have stemmed from the difference in altricial vs. precocial development. However, due to the limited availability of species data, it was impossible to determine whether the passerine group or altricial development was the primary factor. Additionally, unclear visual lateralization was found when studies looked at lek mating species and males who performed courtship. These findings are discussed from both evolutionary and behavioral perspectives. Possible directions for future research have been suggested.
Collapse
|
4
|
Zaynagutdinova E, Karenina K, Giljov A. Lateralization in monogamous pairs: wild geese prefer to keep their partner in the left hemifield except when disturbed. Curr Zool 2021; 67:419-429. [PMID: 34616939 PMCID: PMC8489114 DOI: 10.1093/cz/zoaa074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Behavioural lateralization, which reflects the functional specializations of the two brain hemispheres, is assumed to play an important role in cooperative intraspecific interactions. However, there are few studies focused on the lateralization in cooperative behaviours of individuals, especially in a natural setting. In the present study, we investigated lateralized spatial interactions between the partners in life-long monogamous pairs. The male-female pairs of two geese species (barnacle, Branta leucopsis, and white-fronted, Anser albifrons geese), were observed during different stages of the annual cycle in a variety of conditions. In geese flocks, we recorded which visual hemifield (left/right) the following partner used to monitor the leading partner relevant to the type of behaviour and the disturbance factors. In a significant majority of pairs, the following bird viewed the leading partner with the left eye during routine behaviours such as resting and feeding in undisturbed conditions. This behavioural lateralization, implicating the right hemisphere processing, was consistent across the different aggregation sites and years of the study. In contrast, no significant bias was found in a variety of geese behaviours associated with enhanced disturbance (when alert on water, flying or fleeing away when disturbed, feeding during the hunting period, in urban area feeding and during moulting). We hypothesize that the increased demands for right hemisphere processing to deal with stressful and emergency situations may interfere with the manifestation of lateralization in social interactions.
Collapse
Affiliation(s)
- Elmira Zaynagutdinova
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, St Petersburg, 199034, Russia
| | - Karina Karenina
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, St Petersburg, 199034, Russia
| | - Andrey Giljov
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, St Petersburg, 199034, Russia
| |
Collapse
|
5
|
Rogers LJ. Brain Lateralization and Cognitive Capacity. Animals (Basel) 2021; 11:1996. [PMID: 34359124 PMCID: PMC8300231 DOI: 10.3390/ani11071996] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
One way to increase cognitive capacity is to avoid duplication of functions on the left and right sides of the brain. There is a convincing body of evidence showing that such asymmetry, or lateralization, occurs in a wide range of both vertebrate and invertebrate species. Each hemisphere of the brain can attend to different types of stimuli or to different aspects of the same stimulus and each hemisphere analyses information using different neural processes. A brain can engage in more than one task at the same time, as in monitoring for predators (right hemisphere) while searching for food (left hemisphere). Increased cognitive capacity is achieved if individuals are lateralized in one direction or the other. The advantages and disadvantages of individual lateralization are discussed. This paper argues that directional, or population-level, lateralization, which occurs when most individuals in a species have the same direction of lateralization, provides no additional increase in cognitive capacity compared to individual lateralization although directional lateralization is advantageous in social interactions. Strength of lateralization is considered, including the disadvantage of being very strongly lateralized. The role of brain commissures is also discussed with consideration of cognitive capacity.
Collapse
Affiliation(s)
- Lesley J Rogers
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
6
|
Laterality in the Cape mole-rat, Georychus capensis. Behav Processes 2021; 185:104346. [PMID: 33545320 DOI: 10.1016/j.beproc.2021.104346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/27/2022]
Abstract
Behavioural lateralization, the differential use one side of the body, and/or the bilateral use of sensory organs or limbs, is common in many vertebrates. One way in which behavioural lateralization can be detected in animals is through turning biases, which is an inherent preference to either turn left or right. Mole-rats are a unique group of mammals that demonstrate a wide range of social organizations ranging from solitary to eusociality. Behavioural asymmetry has not previously been investigated in mole-rats. In this study, captive and wild solitary Cape-mole rats (Georychus capensis) were investigated for individual (relative laterality (LR)) and population-level (absolute laterality (LA)) laterality. Mole-rats in the captive group were in the laboratory for at least one year, whereas the wild group were captured and experimented on within 2 weeks of capture. Animals were placed in a Y-maze facing away from the centre of the maze, and the turn towards the centre of the maze was evaluated to determine individual turning biases. Lateralized individual turning biases were more apparent in wild (7/9), compared to captive (3/10) individuals. Both captive and wild populations demonstrated a left bias, which was higher in wild animals, but not significantly so. Cape mole-rats are extremely xenophobic and aggressive, and this aggressive behaviour may underlie the turning biases in these animals, as aggression is primarily a right hemisphere dominant process. The reduced lateralization observed in captive animals may be due to a reduced need for these behaviours as a result of different environments in captivity.
Collapse
|
7
|
Gutiérrez JS, Soriano-Redondo A. Laterality in foraging phalaropes promotes phenotypically assorted groups. Behav Ecol 2020. [DOI: 10.1093/beheco/araa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Asymmetry of the brain and behavior (lateralization) is widespread in the animal kingdom and could be particularly advantageous for gregarious organisms. Here, we investigate the possibility that lateralized behaviors affect the structure of foraging flocks. Phalaropes (Scolopacidae: Phalaropus) are highly aquatic shorebirds and the only vertebrates that spin on the water to feed, often in large flocks. There is anecdotal evidence that individuals spin in a single direction and that those spinning counter the majority are usually found at the periphery of a flock. Although such phenotypic segregation may reduce interference among socially foraging birds, its extent and underlying mechanism remain unexplored. Using over 900 spinning bouts from freely available video repositories, we find support for individual, but not population, lateralization of spinning in the three phalarope species. Although spinning direction was not determined by the position occupied within a flock (periphery vs. core), nearest neighbors were more likely to spin in the same direction; moreover, they were three times less likely to interfere with each other when aligning spinning direction. Our results indicate that a simple rule (keep foraging with similarly lateralized individuals) can generate self-organized interactions among flockmates, resulting in groups phenotypically assorted.
Collapse
Affiliation(s)
- Jorge S Gutiérrez
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, Avenida de Elvas s/n, Badajoz, Spain
| | - Andrea Soriano-Redondo
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Rua Padre Armando Quintas 7, Vairão, Portugal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal
| |
Collapse
|
8
|
No evidence that footedness in pheasants influences cognitive performance in tasks assessing colour discrimination and spatial ability. Learn Behav 2020; 48:84-95. [PMID: 31916193 PMCID: PMC7082386 DOI: 10.3758/s13420-019-00402-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The differential specialization of each side of the brain facilitates the parallel processing of information and has been documented in a wide range of animals. Animals that are more lateralized as indicated by consistent preferential limb use are commonly reported to exhibit superior cognitive ability as well as other behavioural advantages. We assayed the lateralization of 135 young pheasants (Phasianus colchicus), indicated by their footedness in a spontaneous stepping task, and related this measure to individual performance in either 3 assays of visual or spatial learning and memory. We found no evidence that pronounced footedness enhances cognitive ability in any of the tasks. We also found no evidence that an intermediate footedness relates to better cognitive performance. This lack of relationship is surprising because previous work revealed that pheasants have a slight population bias towards right footedness, and when released into the wild, individuals with higher degrees of footedness were more likely to die. One explanation for why extreme lateralization is constrained was that it led to poorer cognitive performance, or that optimal cognitive performance was associated with some intermediate level of lateralization. This stabilizing selection could explain the pattern of moderate lateralization that is seen in most non-human species that have been studied. However, we found no evidence in this study to support this explanation.
Collapse
|
9
|
Schnell AK, Jozet-Alves C, Hall KC, Radday L, Hanlon RT. Fighting and mating success in giant Australian cuttlefish is influenced by behavioural lateralization. Proc Biol Sci 2020; 286:20182507. [PMID: 30862306 DOI: 10.1098/rspb.2018.2507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Behavioural lateralization is widespread. Yet, a fundamental question remains, how can lateralization be evolutionary stable when individuals lateralized in one direction often significantly outnumber individuals lateralized in the opposite direction? A recently developed game theory model predicts that fitness consequences which occur during intraspecific interactions may be driving population-level lateralization as an evolutionary stable strategy. This model predicts that: (i) minority-type individuals exist because they are more likely to adopt unpredictable fighting behaviours during competitive interactions (e.g. fighting); and (ii) majority-type individuals exist because there is a fitness advantage in having their biases synchronized with other conspecifics during interactions that require coordination (e.g. mating). We tested these predictions by investigating biases in giant Australian cuttlefish during fighting and mating interactions. During fighting, most male cuttlefish favoured the left eye and these males showed higher contest escalation; but minority-type individuals with a right-eye bias achieved higher fighting success. During mating interactions, most male cuttlefish favoured the left eye to inspect females. Furthermore, most male cuttlefish approached the female's right side during a mating attempt and these males achieved higher mating success. Our data support the hypothesis that population-level biases are an evolutionary consequence of the fitness advantages involved in intraspecific interactions.
Collapse
Affiliation(s)
- Alexandra K Schnell
- 1 Normandie Université, UNICAEN, University of Rennes, CNRS , UMR EthoS 6552, Caen , France
| | - Christelle Jozet-Alves
- 1 Normandie Université, UNICAEN, University of Rennes, CNRS , UMR EthoS 6552, Caen , France
| | - Karina C Hall
- 2 National Marine Science Centre, Southern Cross University and NSW Department of Primary Industries , Coffs Harbour , Australia
| | - Léa Radday
- 1 Normandie Université, UNICAEN, University of Rennes, CNRS , UMR EthoS 6552, Caen , France
| | - Roger T Hanlon
- 3 Marine Biological Laboratory , Woods Hole, MA 02543 , USA
| |
Collapse
|
10
|
Abstract
We know a good deal about brain lateralization in birds and a good deal about animal welfare, but relatively little about whether there is a noteworthy relationship between avian welfare and brain lateralization. In birds, the left hemisphere is specialised to categorise stimuli and to discriminate preferred categories from distracting stimuli (e.g., food from an array of inedible objects), whereas the right hemisphere responds to small differences between stimuli, controls social behaviour, detects predators and controls attack, fear and escape responses. In this paper, we concentrate on visual lateralization and the effect of light exposure of the avian embryo on the development of lateralization, and we consider its role in the welfare of birds after hatching. Findings suggest that light-exposure during incubation has a general positive effect on post-hatching behaviour, likely because it facilitates control of behaviour by the left hemisphere, which can suppress fear and other distress behaviour controlled by the right hemisphere. In this context, particular attention needs to be paid to the influence of corticosterone, a stress hormone, on lateralization. Welfare of animals in captivity, as is well known, has two cornerstones: enrichment and reduction of stress. What is less well-known is the link between the influence of experience on brain lateralization and its consequent positive or negative outcomes on behaviour. We conclude that the welfare of birds may be diminished by failure to expose the developing embryos to light but we also recognise that more research on the association between lateralization and welfare is needed.
Collapse
|
11
|
Scharf HM, Stenstrom K, Dainson M, Benson TJ, Fernandez-Juricic E, Hauber ME. Mimicry-dependent lateralization in the visual inspection of foreign eggs by American robins. Biol Lett 2019; 15:20190351. [PMID: 31337293 DOI: 10.1098/rsbl.2019.0351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Brain lateralization, or the specialization of function in the left versus right brain hemispheres, has been found in a variety of lineages in contexts ranging from foraging to social and sexual behaviours, including the recognition of conspecific social partners. Here we studied whether the recognition and rejection of avian brood parasitic eggs, another context for species recognition, may also involve lateralized visual processing. We focused on American robins (Turdus migratorius), an egg-rejecter host to occasional brood parasitism by brown-headed cowbirds (Molothrus ater) and tested if robins preferentially used one visual hemifield over the other to inspect mimetic versus non-mimetic model eggs. At the population level, robins showed a significantly lateralized absolute eyedness index (EI) when viewing mimetic model eggs, but individuals varied in left versus right visual hemifield preference. By contrast, absolute EI was significantly lower when viewing non-mimetic eggs. We also found that robins with more lateralized eye usage rejected model eggs at higher rates. We suggest that the inspection and recognition of foreign eggs represent a specialized and lateralized context of species recognition in this and perhaps in other egg-rejecter hosts of brood parasites.
Collapse
Affiliation(s)
- Hannah M Scharf
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Katharine Stenstrom
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Miri Dainson
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Thomas J Benson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA.,Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
12
|
Abstract
Lateralization, i.e., the different functional roles played by the left and right sides of the brain, is expressed in two main ways: (1) in single individuals, regardless of a common direction (bias) in the population (aka individual-level lateralization); or (2) in single individuals and in the same direction in most of them, so that the population is biased (aka population-level lateralization). Indeed, lateralization often occurs at the population-level, with 60–90% of individuals showing the same direction (right or left) of bias, depending on species and tasks. It is usually maintained that lateralization can increase the brain’s efficiency. However, this may explain individual-level lateralization, but not population-level lateralization, for individual brain efficiency is unrelated to the direction of the asymmetry in other individuals. From a theoretical point of view, a possible explanation for population-level lateralization is that it may reflect an evolutionarily stable strategy (ESS) that can develop when individually asymmetrical organisms are under specific selective pressures to coordinate their behavior with that of other asymmetrical organisms. This prediction has been sometimes misunderstood as it is equated with the idea that population-level lateralization should only be present in social species. However, population-level asymmetries have been observed in aggressive and mating displays in so-called “solitary” insects, suggesting that engagement in specific inter-individual interactions rather than “sociality” per se may promote population-level lateralization. Here, we clarify that the nature of inter-individuals interaction can generate evolutionarily stable strategies of lateralization at the individual- or population-level, depending on ecological contexts, showing that individual-level and population-level lateralization should be considered as two aspects of the same continuum.
Collapse
|
13
|
Lateral Asymmetry of Brain and Behaviour in the Zebra Finch, Taeniopygia guttata. Symmetry (Basel) 2018. [DOI: 10.3390/sym10120679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lateralisation of eye use indicates differential specialisation of the brain hemispheres. We tested eye use by zebra finches to view a model predator, a monitor lizard, and compared this to eye use to view a non-threatening visual stimulus, a jar. We used a modified method of scoring eye preference of zebra finches, since they often alternate fixation of a stimulus with the lateral, monocular visual field of one eye and then the other, known as biocular alternating fixation. We found a significant and consistent preference to view the lizard using the left lateral visual field, and no significant eye preference to view the jar. This finding is consistent with specialisation of the left eye system, and right hemisphere, to attend and respond to predators, as found in two other avian species and also in non-avian vertebrates. Our results were considered together with hemispheric differences in the zebra finch for processing, producing, and learning song, and with evidence of right-eye preference in visual searching and courtship behaviour. We conclude that the zebra finch brain has the same general pattern of asymmetry for visual processing as found in other vertebrates and suggest that, contrary to earlier indications from research on lateralisation of song, this may also be the case for auditory processing.
Collapse
|
14
|
Vidal A, Perrot C, Jasmin JN, Lartigau E, Arnaud A, Cézilly F, Béchet A. Lateralization of complex behaviours in wild greater flamingos. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Low survival of strongly footed pheasants may explain constraints on lateralization. Sci Rep 2018; 8:13791. [PMID: 30214056 PMCID: PMC6137170 DOI: 10.1038/s41598-018-32066-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022] Open
Abstract
Brain lateralization is considered adaptive because it leads to behavioral biases and specializations that bring fitness benefits. Across species, strongly lateralized individuals perform better in specific behaviors likely to improve survival. What constrains continued exaggerated lateralization? We measured survival of pheasants, finding that individuals with stronger bias in their footedness had shorter life expectancies compared to individuals with weak biases. Consequently, weak, or no footedness provided the highest fitness benefits. If, as suggested, footedness is indicative of more general brain lateralization, this could explain why continued brain lateralization is constrained even though it may improve performance in specific behaviors.
Collapse
|
16
|
|
17
|
Gaillard M, Scriba MF, Roulin A. Melanism is related to behavioural lateralization in nestling barn owls. Behav Processes 2017; 140:139-143. [PMID: 28483429 DOI: 10.1016/j.beproc.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022]
Abstract
Behavioural laterality is a commonly observed phenomenon in many species suggesting there might be an advantage of using dominantly one side over the other for certain tasks. Indeed, lateralized individuals were often shown to be more successful in cognitive tasks compared to non-lateralized conspecifics. However, stressed individuals are also often, but not always, more strongly lateralized. Because barn owl (Tyto alba) females displaying larger black spots on the tip of their ventral feathers produce offspring that are more resistant to a variety of environmental stressful factors, we examined whether laterality is associated with melanin-based coloration. We recorded whether nestlings use more often the right or left foot to scratch their body and whether they preen more often one side of the body or the other using their bills. We found that the strength of lateralization of preening and scratching was less pronounced in individuals born from heavily spotted mothers. This result might be explained by plumage-related variation in the ability to resist stressful rearing conditions.
Collapse
Affiliation(s)
| | - Madeleine F Scriba
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Variable Signals in a Complex World. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|