1
|
Schmaljohann H, Eikenaar C, Sapir N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol Rev Camb Philos Soc 2022; 97:1231-1252. [PMID: 35137518 DOI: 10.1111/brv.12839] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
Global movement patterns of migratory birds illustrate their fascinating physical and physiological abilities to cross continents and oceans. During their voyages, most birds land multiple times to make so-called 'stopovers'. Our current knowledge on the functions of stopover is mainly based on the proximate study of departure decisions. However, such studies are insufficient to gauge fully the ecological and evolutionary functions of stopover. If we study how a focal trait, e.g. changes in energy stores, affects the decision to depart from a stopover without considering the trait(s) that actually caused the bird to land, e.g. unfavourable environmental conditions for flight, we misinterpret the function of the stopover. It is thus important to realise and acknowledge that stopovers have many different functions, and that not every migrant has the same (set of) reasons to stop-over. Additionally, we may obtain contradictory results because the significance of different traits to a migrant is context dependent. For instance, late spring migrants may be more prone to risk-taking and depart from a stopover with lower energy stores than early spring migrants. Thus, we neglect that departure decisions are subject to selection to minimise immediate (mortality risk) and/or delayed (low future reproductive output) fitness costs. To alleviate these issues, we first define stopover as an interruption of migratory endurance flight to minimise immediate and/or delayed fitness costs. Second, we review all probable functions of stopover, which include accumulating energy, various forms of physiological recovery and avoiding adverse environmental conditions for flight, and list potential other functions that are less well studied, such as minimising predation, recovery from physical exhaustion and spatiotemporal adjustments to migration. Third, derived from these aspects, we argue for a paradigm shift in stopover ecology research. This includes focusing on why an individual interrupts its migratory flight, which is more likely to identify the individual-specific function(s) of the stopover correctly than departure-decision studies. Moreover, we highlight that the selective forces acting on stopover decisions are context dependent and are expected to differ between, e.g. K-/r-selected species, the sexes and migration strategies. For example, all else being equal, r-selected species (low survival rate, high reproductive rate) should have a stronger urge to continue the migratory endurance flight or resume migration from a stopover because the potential increase in immediate fitness costs suffered from a flight is offset by the expected higher reproductive success in the subsequent breeding season. Finally, we propose to focus less on proximate mechanisms controlling landing and departure decisions, and more on ultimate mechanisms to identify the selective forces shaping stopover decisions. Our ideas are not limited to birds but can be applied to any migratory species. Our revised definition of stopover and the proposed paradigm shift has the potential to stimulate a fruitful discussion towards a better evolutionary ecological understanding of the functions of stopover. Furthermore, identifying the functions of stopover will support targeted measures to conserve and restore the functionality of stopover sites threatened by anthropogenic environmental changes. This is especially important for long-distance migrants, which currently are in alarming decline.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, 26129, Germany.,Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Haifa, 3498838, Israel
| |
Collapse
|
2
|
Eikenaar C, Schäfer J, Hessler S, Packmor F, Schmaljohann H. Diel variation in corticosterone and departure decision making in migrating birds. Horm Behav 2020; 122:104746. [PMID: 32217064 DOI: 10.1016/j.yhbeh.2020.104746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/20/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023]
Abstract
Animals usually show distinct periods of diel activity and non-activity. Circulating baseline levels of glucocorticoid hormones (corticosterone and cortisol) often peak just before or at the transition from the non-active to the active period of the day. This upregulation of glucocorticoids may function to mobilize stored energy and prepare an animal for increased activity. Usually, the alternation of active and non-active periods is highly predictable; however, there is one group of animals for which this is not always the case. Many otherwise diurnal birds show nocturnal activity during the migration seasons. Nocturnal migratory flights are alternated with stopover periods during which the birds refuel and rest. Stopovers vary in length, meaning that nocturnal migrants are inactive in some nights (when they continue their stopover) but extremely active in other nights (when they depart and fly throughout the night). This provides an ideal natural situation for testing whether glucocorticoids are upregulated in preparation for an increase in activity, which we used in this study. We found that in northern wheatears (Oenanthe oenanthe), corticosterone levels peaked in the few hours before sunset in birds departing from stopover that night, and, importantly, that this peak was absent in birds continuing stopover. This indicates that corticosterone is upregulated in the face of an increase in energy demands, underlining corticosterone's preparative metabolic function (energy mobilization). The timing of upregulation of corticosterone also gives a first insight in when during the day nocturnally migrating birds decide whether or not to resume migration.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, 26386 Wilhelmshaven, Germany.
| | - Jana Schäfer
- Institute of Avian Research, 26386 Wilhelmshaven, Germany
| | - Sven Hessler
- Institute of Avian Research, 26386 Wilhelmshaven, Germany
| | - Florian Packmor
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, United Kingdom
| | - Heiko Schmaljohann
- Institute of Avian Research, 26386 Wilhelmshaven, Germany; Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
3
|
Klinner T, Buddemeier J, Bairlein F, Schmaljohann H. Decision-making in migratory birds at stopover: an interplay of energy stores and feeding conditions. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-019-2784-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Packmor F, Klinner T, Woodworth BK, Eikenaar C, Schmaljohann H. Stopover departure decisions in songbirds: do long-distance migrants depart earlier and more independently of weather conditions than medium-distance migrants? MOVEMENT ECOLOGY 2020; 8:6. [PMID: 32047634 PMCID: PMC7006082 DOI: 10.1186/s40462-020-0193-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/16/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Songbirds following distinct migration strategies (e.g. long- vs. short- to medium-distance migrants) often differ in their speed of migration during autumn and, thus, are assumed to face different time constraints. During migration, most songbird species alternate migratory flights with stopover periods. Many of them restrict these migratory flights to the night, i.e., they are nocturnal migrants. At stopover, nocturnal migrants need to select a specific night (night-to-night decision) and time of night (within-night decision) to resume migration. These departure decisions, which largely determine the speed of migration, are jointly affected by a set of intrinsic and extrinsic factors, i.e., departure cues. Here we aim to assess whether the set of intrinsic and extrinsic factors and the magnitude of their respective effects on stopover departure decisions differs between nocturnally migrating songbird species, depending on their migration strategy and associated time constraints. METHODS We radio-tracked migrating Northern Wheatears (Oenanthe oenanthe; long-distance migrant), European robins (Erithacus rubecula) and Common Blackbirds (Turdus merula; both medium-distance migrants) during autumn stopover and analysed their night-to-night and within-night departure timing in relation to intrinsic and extrinsic factors. RESULTS Species generally differed in their departure timing on both temporal scales, with shortest stopovers and earliest nocturnal departures in the long-distance migrant. Some factors, such as day of year, fuel load, cloud cover and crosswind, had consistent effects on stopover departure decisions in all three species. However, species differed in the effects of tailwind assistance, change in atmospheric pressure and air temperature on their stopover departure decisions. Whereas night-to-night decisions were affected by these extrinsic factors in either both or one of the medium-distance migrants, such effects were not found in the long-distance migrant. CONCLUSIONS Our results suggest that the general timing of departures in songbirds is affected by the species-specific migration strategy and associated time constraints. Further, they imply that the assessment and usage of specific extrinsic factors, i.e., weather conditions, as departure cues is adjusted based on this migration strategy, with the long-distance migrants being least selective at departure. Other intrinsic and extrinsic factors, however, seem to be used as departure cues independent of migration strategy.
Collapse
Affiliation(s)
- Florian Packmor
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW UK
| | - Thomas Klinner
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Bradley K. Woodworth
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - Cas Eikenaar
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- Institute for Biology und Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Eikenaar C, Ballstaedt E, Hessler S, Klinner T, Müller F, Schmaljohann H. Cues, corticosterone and departure decisions in a partial migrant. Gen Comp Endocrinol 2018; 261:59-66. [PMID: 29397064 DOI: 10.1016/j.ygcen.2018.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 11/20/2022]
Abstract
Most migrating birds make multiple stopovers to fuel and/or rest. The decision to resume migration from stopover is based on various cues, such as time within the season and wind conditions. There are hints that the strength of these departure cues shapes corticosterone level, which in its turn appears to regulate the timing of departure. We here provide results that very strongly indicate that indeed departure cues jointly shape corticosterone level of migrants at stopover. We compared corticosterone level between migrating and sedentary common blackbirds (Turdus merula) sampled simultaneously at the same location during autumn migration. As expected, in migrating individuals corticosterone level was positively associated with time within the season and with current wind conditions. The latter was only apparent in adult birds and not in 1st year migrants, thus matching the observation that 1st year autumnal migrants are less wind selective than adults. In contrast to the migrants, in sedentary blackbirds these "cues" did not explain variation in corticosterone level. Furthermore, stopover departure seemed more likely and to occur earlier in the night in migrants with high corticosterone level. Our unique comparative study thus supports the newly developed concept that corticosterone mediates between departure cues and stopover departure timing in avian migrants.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Elmar Ballstaedt
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Thomas Klinner
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
6
|
Eikenaar C, Müller F, Leutgeb C, Hessler S, Lebus K, Taylor PD, Schmaljohann H. Corticosterone and timing of migratory departure in a songbird. Proc Biol Sci 2018; 284:rspb.2016.2300. [PMID: 28077768 DOI: 10.1098/rspb.2016.2300] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/24/2016] [Indexed: 11/12/2022] Open
Abstract
Bird migration entails replenishing fuel stores at stopover sites. There, individuals make daily decisions whether to resume migration, and must also decide their time of departure. Variation in departure timing affects the total time required to complete a migratory journey, which in turn affects fitness through arrival time at the breeding and wintering grounds. It is well established that stopover departure decisions are based on cues from innate rhythms, intrinsic factors and extrinsic factors. Yet, virtually nothing is known about the physiological mechanism(s) linking these cues to departure decisions. Here, we show for a nocturnal migratory songbird, the northern wheatear (Oenanthe oenanthe), that baseline corticosterone levels of birds at stopover increased both over the migratory season and with wind assistance towards the migratory destination. Corticosterone in turn predicted departure probability; individuals with high baseline corticosterone levels were more likely to resume migration on a given night. Corticosterone further predicted the departure time within the night, with high baseline levels being associated with early departures. These novel findings indicate that corticosterone may be mediating between departure cues and the timing of departure from a stopover site, which is a major step towards understanding the hormonal control of animal migration.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Clara Leutgeb
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Konstantin Lebus
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Philip D Taylor
- Bird Studies Canada Chair of Ornithology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Heiko Schmaljohann
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
7
|
Heyers D, Elbers D, Bulte M, Bairlein F, Mouritsen H. The magnetic map sense and its use in fine-tuning the migration programme of birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:491-497. [PMID: 28365788 DOI: 10.1007/s00359-017-1164-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
The Earth's magnetic field is one of several natural cues, which migratory birds can use to derive directional ("compass") information for orientation on their biannual migratory journeys. Moreover, magnetic field effects on prominent aspects of the migratory programme of birds, such as migratory restlessness behaviour, fuel deposition and directional orientation, implicate that geomagnetic information can also be used to derive positional ("map") information. While the magnetic "compass" in migratory birds is likely to be based on radical pair-forming molecules embedded in their visual system, the sensory correlates underlying a magnetic "map" sense currently remain elusive. Behavioural, physiological and neurobiological findings indicate that the sensor is most likely innervated by the ophthalmic branch of the trigeminal nerve and based on magnetic iron particles. Information from this unknown sensor is neither necessary nor sufficient for a functional magnetic compass, but instead could contribute important components of a multifactorial "map" for global positioning. Positional information could allow migratory birds to make vitally important dynamic adaptations of their migratory programme at any relevant point during their journeys.
Collapse
Affiliation(s)
- D Heyers
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany.
| | - D Elbers
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,AG Biochemistry, Faculty of Medicine/Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - M Bulte
- , Schmidtkunzstraße 13, 86199, Augsburg, Germany.,Institute for Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
| | - F Bairlein
- Institute for Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
| | - H Mouritsen
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| |
Collapse
|
8
|
Schmaljohann H, Eikenaar C. How do energy stores and changes in these affect departure decisions by migratory birds? A critical view on stopover ecology studies and some future perspectives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:411-429. [PMID: 28332031 DOI: 10.1007/s00359-017-1166-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/01/2022]
Abstract
In birds, accumulating energy is far slower than spending energy during flight. During migration, birds spend, therefore, most of the time at stopover refueling energy used during the previous flight. This elucidates why current energy stores and actual rate of accumulating energy are likely crucial factors influencing bird's decision when to resume migration in addition to other intrinsic (sex, age) and extrinsic (predation, weather) factors modulating the decision within the innate migration program. After first summarizing how energy stores and stopover durations are generally determined, we critically review that high-energy stores and low rates of accumulating energy were significantly related to high departure probabilities in several bird groups. There are, however, also many studies showing no effect at all. Recent radio-tracking studies highlighted that migrants leave a site either to resume migration or to search for a better stopover location, so-called "landscape movements". Erroneously treating such movements as departures increases the likelihood of type II errors which might mistakenly suggest no effect of either trait on departure. Furthermore, we propose that energy loss during the previous migratory flight in relation to bird's current energy stores and migration strategy significantly affects its urge to refuel and hence its departure decision.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.
| | - Cas Eikenaar
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
9
|
Eikenaar C, Müller F, Kämpfer S, Schmaljohann H. Fuel accumulation advances nocturnal departure: a migratory restlessness study on northern wheatears at stopover. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Müller F, Taylor PD, Sjöberg S, Muheim R, Tsvey A, Mackenzie SA, Schmaljohann H. Towards a conceptual framework for explaining variation in nocturnal departure time of songbird migrants. MOVEMENT ECOLOGY 2016; 4:24. [PMID: 27833750 PMCID: PMC5066284 DOI: 10.1186/s40462-016-0089-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/22/2016] [Indexed: 05/16/2023]
Abstract
Most songbird migrants travel between their breeding areas and wintering grounds by a series of nocturnal flights. The exact nocturnal departure time for these flights varies considerably between individuals even of the same species. Although the basic circannual and circadian rhythms of songbirds, their adaptation to migration, and the factors influencing the birds' day-to-day departure decision are reasonably well studied, we do not understand how birds time their departures within the night. These decisions are crucial, because the nocturnal departure time defines the potential flight duration of the migratory night. The distances covered during the nocturnal migratory flights in the course of migration in turn directly affect the overall speed of migration. To understand the factors influencing the arrival of the birds in the breeding/wintering areas, we need to investigate the mechanisms that control nocturnal departure time. Here, we provide the first conceptual framework for explaining the variation commonly observed in this migratory trait. The basic schedule of nocturnal departure is likely regulated by both the circannual and circadian rhythms of the innate migration program. We postulate that the endogenously controlled schedule of nocturnal departures is modified by intrinsic and extrinsic factors. So far there is only correlative evidence that birds with a high fuel load or a considerable increase in fuel load and significant wind (flow) assistance towards their migratory goal depart early within the night. In contrast, birds migrating with little fuel and under unfavorable wind conditions show high variation in their nocturnal departure time. The latter may contain an unknown proportion of nocturnal movements not directly related to migratory flights. Excluding such movements is crucial to clearly identify the main drivers of the variation in nocturnal departure time. In general we assume that the observed variation in the nocturnal departure time is explained by individually different reactions norms of the innate migration program to both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Florian Müller
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Philip D. Taylor
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS B4P 2R6 Canada
- Bird Studies Canada, 115 Front Street, Port Rowan, ON N0E 1M0 Canada
| | - Sissel Sjöberg
- Department of Biology, Lund University, Biology Building, Sölvegatan 35, 223 62 Lund, Sweden
| | - Rachel Muheim
- Department of Biology, Lund University, Biology Building, Sölvegatan 35, 223 62 Lund, Sweden
| | - Arseny Tsvey
- Biological Station Rybachy, Zoological Institute RAS, RU-238535 Rybachy, Kaliningrad region Russia
| | | | - Heiko Schmaljohann
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|