1
|
Rose C, Lund MB, Søgård AM, Busck MM, Bechsgaard JS, Schramm A, Bilde T. Social transmission of bacterial symbionts homogenizes the microbiome within and across generations of group-living spiders. ISME COMMUNICATIONS 2023; 3:60. [PMID: 37330540 PMCID: PMC10276852 DOI: 10.1038/s43705-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/19/2023]
Abstract
Disentangling modes and fidelity of symbiont transmission are key for understanding host-symbiont associations in wild populations. In group-living animals, social transmission may evolve to ensure high-fidelity transmission of symbionts, since non-reproducing helpers constitute a dead-end for vertical transmission. We investigated symbiont transmission in the social spider Stegodyphus dumicola, which lives in family groups where the majority of females are non-reproducing helpers, females feed offspring by regurgitation, and individuals feed communally on insect prey. Group members share temporally stable microbiomes across generations, while distinct variation in microbiome composition exists between groups. We hypothesized that horizontal transmission of symbionts is enhanced by social interactions, and investigated transmission routes within (horizontal) and across (vertical) generations using bacterial 16S rRNA gene amplicon sequencing in three experiments: (i) individuals were sampled at all life stages to assess at which life stage the microbiome is acquired. (ii) a cross-fostering design was employed to test whether offspring carry the microbiome from their natal nest, or acquire the microbiome of the foster nest via social transmission. (iii) adult spiders with different microbiome compositions were mixed to assess whether social transmission homogenizes microbiome composition among group members. We demonstrate that offspring hatch symbiont-free, and bacterial symbionts are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster)mothers in an early life stage. Social transmission governs horizontal inter-individual mixing and homogenization of microbiome composition among nest mates. We conclude that temporally stable host-symbiont associations in social species can be facilitated and maintained by high-fidelity social transmission.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Marie B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andrea M Søgård
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mette M Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper S Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Parthasarathy B, Müller M, Bilde T, Schneider JM. Hunger state and not personality determines task participation in a spider society. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Bisshop A. Arachnomadology: A Zoētic Framework for Queering Stories of Spider Sex, Life, and Death. AUSTRALIAN FEMINIST STUDIES 2022. [DOI: 10.1080/08164649.2022.2051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Dibben‐Young A, Harmon KC, Lunow‐Luke A, Idle JL, Christensen DL, Price MR. Cooperative breeding behaviors in the Hawaiian Stilt ( Himantopus mexicanus knudseni). Ecol Evol 2021; 11:5010-5016. [PMID: 34025987 PMCID: PMC8131765 DOI: 10.1002/ece3.7509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/07/2022] Open
Abstract
Cooperative breeding, which is commonly characterized by nonbreeding individuals that assist others with reproduction, is common in avian species. However, few accounts have been reported in Charadriiformes, particularly island-nesting species. We present incidental observations of cooperative breeding behaviors in the Hawaiian Stilt (Himantopus mexicanus knudseni), an endangered subspecies of the Black-necked Stilt (Himantopus mexicanus), during the 2012-2020 nesting seasons on the Hawaiian islands of O'ahu and Moloka'i. We describe two different behaviors that are indicative of cooperative breeding: (a) egg incubation by multiple adults; (b) helpers-at-the-nest, whereby juveniles delay dispersal and reproduction to assist parents and siblings with reproduction. These observations are the first published accounts of cooperative breeding in this subspecies and merit further investigation, as cooperative breeding may improve population viability of the endangered, endemic Hawaiian Stilt.
Collapse
Affiliation(s)
| | - Kristen C. Harmon
- Department of Natural Resources and Environmental ManagementUniversity of Hawai‘i at MānoaHonoluluHIUSA
| | - Arianna Lunow‐Luke
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
| | - Jessica L. Idle
- Department of Natural Resources and Environmental ManagementUniversity of Hawai‘i at MānoaHonoluluHIUSA
| | - Dain L. Christensen
- Department of Natural Resources and Environmental ManagementUniversity of Hawai‘i at MānoaHonoluluHIUSA
| | - Melissa R. Price
- Department of Natural Resources and Environmental ManagementUniversity of Hawai‘i at MānoaHonoluluHIUSA
| |
Collapse
|
5
|
Loftus JC, Perez AA, Sih A. Task syndromes: linking personality and task allocation in social animal groups. Behav Ecol 2021; 32:1-17. [PMID: 33708004 PMCID: PMC7937036 DOI: 10.1093/beheco/araa083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022] Open
Abstract
Studies of eusocial insects have extensively investigated two components of task allocation: how individuals distribute themselves among different tasks in a colony and how the distribution of labor changes to meet fluctuating task demand. While discrete age- and morphologically-based task allocation systems explain much of the social order in these colonies, the basis for task allocation in non-eusocial organisms and within eusocial castes remains unknown. Building from recent advances in the study of among-individual variation in behavior (i.e., animal personalities), we explore a potential mechanism by which individuality in behaviors unrelated to tasks can guide the developmental trajectories that lead to task specialization. We refer to the task-based behavioral syndrome that results from the correlation between the antecedent behavioral tendencies and task participation as a task syndrome. In this review, we present a framework that integrates concepts from a long history of task allocation research in eusocial organisms with recent findings from animal personality research to elucidate how task syndromes and resulting task allocation might manifest in animal groups. By drawing upon an extensive and diverse literature to evaluate the hypothesized framework, this review identifies future areas for study at the intersection of social behavior and animal personality.
Collapse
Affiliation(s)
- J C Loftus
- Department of Anthropology, University of California at Davis, Davis, CA, USA.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - A A Perez
- Department of Entomology, University of California at Davis, Davis, CA, USA
| | - A Sih
- Department of Environmental Science and Policy, University of California at Davis, Davis, CA, USA
| |
Collapse
|
6
|
Moura RF, Tizo-Pedroso E, Del-Claro K. Can morphological and behavioral traits predict the foraging and feeding dynamics of social arachnids? Curr Zool 2020; 67:183-190. [PMID: 33854536 PMCID: PMC8026155 DOI: 10.1093/cz/zoaa058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/22/2020] [Indexed: 11/14/2022] Open
Abstract
Complex social insect species exhibit task specialization mediated by morphological and behavioral traits. However, evidence of such traits is scarce for other social arthropods. We investigated whether the social pseudoscorpion Paratemnoides nidificator exhibits morphologically and behaviorally specialized individuals in prey capture. We measured body and chela sizes of adult pseudoscorpions and analyzed predation processes. Larger individuals spent more time moving through the colony and foraging than smaller pseudoscorpions. Individuals that captured prey had increased body and absolute chelae sizes. Although larger individuals had relatively small chelae size, they showed a higher probability of prey capture. Larger individuals manipulated prey often, although they fed less than smaller pseudoscorpions. Individuals that initiated captures fed more frequently and for more time than the others. Natural selection might be favoring individuals specialized in foraging and colony protection, allowing smaller and less efficient adults to avoid contact with dangerous prey. To our knowledge, there is incipient information regarding specialized individuals in arachnids, and our results might indicate the emergence of a morphologically specialized group in this species.
Collapse
Affiliation(s)
- Renan F Moura
- Laboratório de Ecologia Comportamental e de Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, 38402-020, Brazil
- Address correspondence to Renan F. Moura. E-mail:
| | - Everton Tizo-Pedroso
- Centro de Ensino e Aprendizado em Rede, Universidade Estadual de Goiás, Anápolis, GO, 75123-315, Brazil
| | - Kleber Del-Claro
- Laboratório de Ecologia Comportamental e de Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, 38402-020, Brazil
| |
Collapse
|
7
|
Busck MM, Settepani V, Bechsgaard J, Lund MB, Bilde T, Schramm A. Microbiomes and Specific Symbionts of Social Spiders: Compositional Patterns in Host Species, Populations, and Nests. Front Microbiol 2020; 11:1845. [PMID: 32849442 PMCID: PMC7412444 DOI: 10.3389/fmicb.2020.01845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Social spiders have remarkably low species-wide genetic diversities, potentially increasing the relative importance of microbial symbionts for host fitness. Here we explore the bacterial microbiomes of three species of social Stegodyphus (S. dumicola, S. mimosarum, and S. sarasinorum), within and between populations, using 16S rRNA gene amplicon sequencing. The microbiomes of the three spider species were distinct but shared similarities in membership and structure. This included low overall diversity (Shannon index 0.5–1.7), strong dominance of single symbionts in individual spiders (McNaughton’s dominance index 0.68–0.93), and a core microbiome (>50% prevalence) consisting of 5–7 specific symbionts. The most abundant and prevalent symbionts were classified as Chlamydiales, Borrelia, and Mycoplasma, all representing novel, presumably Stegodyphus-specific lineages. Borrelia- and Mycoplasma-like symbionts were localized by fluorescence in situ hybridization (FISH) in the spider midgut. The microbiomes of individual spiders were highly similar within nests but often very different between nests from the same population, with only the microbiome of S. sarasinorum consistently reflecting host population structure. The weak population pattern in microbiome composition renders microbiome-facilitated local adaptation unlikely. However, the retention of specific symbionts across populations and species may indicate a recurrent acquisition from environmental vectors or an essential symbiotic contribution to spider phenotype.
Collapse
Affiliation(s)
- Mette Marie Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Nest defence and offspring provisioning in a cooperative bird: individual subordinates vary in total contribution, but no division of tasks among breeders and subordinates. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02877-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Grinsted L, Schou MF, Settepani V, Holm C, Bird TL, Bilde T. Prey to predator body size ratio in the evolution of cooperative hunting-a social spider test case. Dev Genes Evol 2019; 230:173-184. [PMID: 31768622 DOI: 10.1007/s00427-019-00640-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
One of the benefits of cooperative hunting may be that predators can subdue larger prey. In spiders, cooperative, social species can capture prey many times larger than an individual predator. However, we propose that cooperative prey capture does not have to be associated with larger caught prey per se, but with an increase in the ratio of prey to predator body size. This can be achieved either by catching larger prey while keeping predator body size constant, or by evolving a smaller predator body size while maintaining capture of large prey. We show that within a genus of relatively large spiders, Stegodyphus, subsocial spiders representing the ancestral state of social species are capable of catching the largest prey available in the environment. Hence, within this genus, the evolution of cooperation would not provide access to otherwise inaccessible, large prey. Instead, we show that social Stegodyphus spiders are smaller than their subsocial counterparts, while catching similar sized prey, leading to the predicted increase in prey-predator size ratio with sociality. We further show that in a genus of small spiders, Anelosimus, the level of sociality is associated with an increased size of prey caught while predator size is unaffected by sociality, leading to a similar, predicted increase in prey-predator size ratio. In summary, we find support for our proposed 'prey to predator size ratio hypothesis' and discuss how relaxed selection on large body size in the evolution of social, cooperative living may provide adaptive benefits for ancestrally relatively large predators.
Collapse
Affiliation(s)
- Lena Grinsted
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Mads F Schou
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Virginia Settepani
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Christina Holm
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Tharina L Bird
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Plot, 10071, Palapye, Botswana
| | - Trine Bilde
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark.
| |
Collapse
|
10
|
Tuni C, Mestre L, Berger-Tal R, Lubin Y, Bilde T. Mate choice in naturally inbred spiders: testing the role of relatedness. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Keiser CN, Hammer TJ, Pruitt JN. Social spider webs harbour largely consistent bacterial communities across broad spatial scales. Biol Lett 2019; 15:20190436. [PMID: 31551063 DOI: 10.1098/rsbl.2019.0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Social animals that live in domiciles constructed from biomaterials may facilitate microbial growth. Spider webs are one of the most conspicuous biomaterials in nature, yet almost nothing is known about the potential for webs to harbour microbes, even in social spiders that live in dense, long-term aggregations. Here, we tested whether the dominant bacteria present in social spider webs vary across sampling localities and whether the more permanent retreat web harbours compositionally distinct microbes from the more ephemeral capture webs in the desert social spider, Stegodyphus dumicola. We also sampled spider cuticles and prey items in a subset of colonies. We found that spider colonies across large spatial scales harboured similar web-associated bacterial communities. We also found substantial overlap in bacterial community composition between spider cuticle, prey and web samples. These data suggest that social spider webs can harbour characteristic microbial communities and potentially facilitate microbial transmission among individuals, and this study serves as the first step towards understanding the microbial ecology of these peculiar animal societies.
Collapse
Affiliation(s)
- Carl N Keiser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience, and Behavior, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
12
|
Junghanns A, Holm C, Schou MF, Overgaard J, Malte H, Uhl G, Bilde T. Physiological Adaptations to Extreme Maternal and Allomaternal Care in Spiders. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
The survival of the shyest: a computational model shows the effect of web structure on the origins of social spiders. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Bechsgaard J, Schou MF, Vanthournout B, Hendrickx F, Knudsen B, Settepani V, Schierup MH, Bilde T. Evidence for Faster X Chromosome Evolution in Spiders. Mol Biol Evol 2019; 36:1281-1293. [PMID: 30912801 PMCID: PMC6526907 DOI: 10.1093/molbev/msz074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In species with chromosomal sex determination, X chromosomes are predicted to evolve faster than autosomes because of positive selection on recessive alleles or weak purifying selection. We investigated X chromosome evolution in Stegodyphus spiders that differ in mating system, sex ratio, and population dynamics. We assigned scaffolds to X chromosomes and autosomes using a novel method based on flow cytometry of sperm cells and reduced representation sequencing. We estimated coding substitution patterns (dN/dS) in a subsocial outcrossing species (S. africanus) and its social inbreeding and female-biased sister species (S. mimosarum), and found evidence for faster-X evolution in both species. X chromosome-to-autosome diversity (piX/piA) ratios were estimated in multiple populations. The average piX/piA estimates of S. africanus (0.57 [95% CI: 0.55-0.60]) was lower than the neutral expectation of 0.75, consistent with more hitchhiking events on X-linked loci and/or a lower X chromosome mutation rate, and we provide evidence in support of both. The social species S. mimosarum has a significantly higher piX/piA ratio (0.72 [95% CI: 0.65-0.79]) in agreement with its female-biased sex ratio. Stegodyphus mimosarum also have different piX/piA estimates among populations, which we interpret as evidence for recurrent founder events. Simulations show that recurrent founder events are expected to decrease the piX/piA estimates in S. mimosarum, thus underestimating the true effect of female-biased sex ratios. Finally, we found lower synonymous divergence on X chromosomes in both species, and the male-to-female substitution ratio to be higher than 1, indicating a higher mutation rate in males.
Collapse
Affiliation(s)
| | - Mads Fristrup Schou
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Evolution and Optics of Nanostructure Group (EON), Biology Department, Ghent University, Ghent, Belgium
| | - Frederik Hendrickx
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Terrestrial Ecology Unit (TEREC), Biology Department, Ghent University, Ghent, Belgium
| | | | | | - Mikkel Heide Schierup
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
15
|
Hunt ER, Mi B, Geremew R, Fernandez C, Wong BM, Pruitt JN, Pinter-Wollman N. Resting networks and personality predict attack speed in social spiders. Behav Ecol Sociobiol 2019; 73. [PMID: 32440036 DOI: 10.1007/s00265-019-2715-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Groups of social predators capture large prey items collectively, and their social interaction patterns may impact how quickly they can respond to time-sensitive predation opportunities. We investigated whether various organizational levels of resting interactions (individual, sub-group, group), observed at different intervals leading up to a collective prey attack, impacted the predation speed of colonies of the social spider Stegodyphus dumicola. We found that in adult spiders, overall group connectivity (average degree) increased group attack speed. However, this effect was detected only immediately before the predation event; connectivity between 2 and 4 days before prey capture had little impact on the collective dynamics. Significantly, lower social proximity of the group's boldest individual to other group members (closeness centrality) immediately prior and 2 days before prey capture was associated with faster attack speeds. These results suggest that for adult spiders, the long-lasting effects of the boldest individual on the group's attack dynamics are mediated by its role in the social network, and not only by its boldness. This suggests that behavioural traits and social network relationships should be considered together when defining keystone individuals in some contexts. By contrast, for subadult spiders, while the group maximum boldness was negatively correlated with latency to attack, no significant resting network predictors of latency to attack were found. Thus, separate behavioural mechanisms might play distinctive roles in determining collective outcomes at different developmental stages, timescales, and levels of social organization.
Collapse
Affiliation(s)
- Edmund R Hunt
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Brian Mi
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rediet Geremew
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Camila Fernandez
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brandyn M Wong
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan N Pruitt
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Vanthournout B, Busck MM, Bechsgaard J, Hendrickx F, Schramm A, Bilde T. Male spiders control offspring sex ratio through greater production of female-determining sperm. Proc Biol Sci 2019; 285:rspb.2017.2887. [PMID: 29563266 DOI: 10.1098/rspb.2017.2887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Sex allocation theory predicts that when sons and daughters have different reproductive values, parents should adjust offspring sex ratio towards the sex with the higher fitness return. Haplo-diploid species directly control offspring sex ratio, but species with chromosomal sex determination (CSD) were presumed to be constrained by Mendelian segregation. There is now increasing evidence that CSD species can adjust sex ratio strategically, but the underlying mechanism is not well understood. One hypothesis states that adaptive control is more likely to evolve in the heterogametic sex through a bias in gamete production. We investigated this hypothesis in males as the heterogametic sex in two social spider species that consistently show adaptive female-biased sex ratio and in one subsocial species that is characterized by equal sex ratio. We quantified the production of male (0) and female (X) determining sperm cells using flow cytometry, and show that males of social species produce significantly more X-carrying sperm than 0-sperm, on average 70%. This is consistent with the production of more daughters. Males of the subsocial species produced a significantly lower bias of 54% X-carrying sperm. We also investigated whether inter-genomic conflict between hosts and their endosymbionts may explain female bias. Next generation sequencing showed that five common genera of bacterial endosymbionts known to affect sex ratio are largely absent, ruling out that endosymbiont bacteria bias sex ratio in social spiders. Our study provides evidence for paternal control over sex allocation through biased gamete production as a mechanism by which the heterogametic sex in CSD species adaptively adjust offspring sex ratio.
Collapse
Affiliation(s)
- Bram Vanthournout
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark.,Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Mette Marie Busck
- Department of Bioscience, Section for Microbiology, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark
| | - Jesper Bechsgaard
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark
| | - Frederik Hendrickx
- Biology Department, Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.,Entomology Department, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Andreas Schramm
- Department of Bioscience, Section for Microbiology, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Hunt ER, Mi B, Fernandez C, Wong BM, Pruitt JN, Pinter-Wollman N. Social interactions shape individual and collective personality in social spiders. Proc Biol Sci 2018; 285:20181366. [PMID: 30185649 PMCID: PMC6158534 DOI: 10.1098/rspb.2018.1366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 11/12/2022] Open
Abstract
The behavioural composition of a group and the dynamics of social interactions can both influence how social animals work collectively. For example, individuals exhibiting certain behavioural tendencies may have a disproportionately large impact on the group, and so are referred to as keystone individuals, while interactions between individuals can facilitate information transmission about resources. Despite the potential impact of both behavioural composition and interactions on collective behaviour, the relationship between consistent behaviours (also known as personalities) and social interactions remains poorly understood. Here, we use stochastic actor-oriented models to uncover the interdependencies between boldness and social interactions in the social spider Stegodyphus dumicola We find that boldness has no effect on the likelihood of forming social interactions, but interactions do affect boldness, and lead to an increase in the boldness of the shyer individual. Furthermore, spiders tend to interact with the same individuals as their neighbours. In general, boldness decreases over time, but once an individual's boldness begins to increase, this increase accelerates, suggesting a positive feedback mechanism. These dynamics of interactions and boldness result in skewed boldness distributions of a few bold individuals and many shy individuals, as observed in nature. This group behavioural composition facilitates efficient collective behaviours, such as rapid collective prey attack. Thus, by examining the relationship between behaviour and interactions, we reveal the mechanisms that underlie the emergence of adaptive group composition and collective behaviour.
Collapse
Affiliation(s)
- Edmund R Hunt
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Brian Mi
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Camila Fernandez
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brandyn M Wong
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan N Pruitt
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|