1
|
Blane JC, Holland RA. The effect of observing trained conspecifics on the performance and motivation of goldfish, Carassius auratus, in a spatial task. Behav Processes 2024; 217:105021. [PMID: 38493969 DOI: 10.1016/j.beproc.2024.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Spatial and social cognition are two aspects of fish behaviour that have been subject to an increasing amount of research in recent years, but few have investigated potential behaviour overlaps. Testing the ability for an individual to socially learn a spatial task would bridge this gap in understanding. We provided naïve goldfish, Carassius auratus, the opportunity to observe a trained conspecific navigate a T-shaped maze, and then recorded how many trials it took for them to learn the maze, time taken per trial, motivation, and acceptance of the food reward. We also recorded how many trials it took a control group to learn the maze without the opportunity to observe a demonstrator. The observer group took significantly longer to learn the maze than the control group. Although the observer group were significantly less motivated (trials without a choice made), they were significantly more likely to accept the food reward. The social learning of reward acceptance was taking place, but the process of the demonstration disrupted the training of the spatial task, with possible explanations as the passenger effect and trade-off mechanism being discussed. Future studies are needed to determine whether goldfish can acquire spatial information socially; however, this study contributes to the feasibility of studying social learning of environmentally information in goldfish.
Collapse
Affiliation(s)
- James C Blane
- School of Natural Sciences, Bangor University, Bangor, UK.
| | | |
Collapse
|
2
|
Webster MM. Social learning in non-grouping animals. Biol Rev Camb Philos Soc 2023; 98:1329-1344. [PMID: 36992613 DOI: 10.1111/brv.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Social learning is widespread in the animal kingdom and is involved in behaviours from navigation and predator avoidance to mate choice and foraging. While social learning has been extensively studied in group-living species, this article presents a literature review demonstrating that social learning is also seen in a range of non-grouping animals, including arthropods, fishes and tetrapod groups, and in a variety of behavioural contexts. We should not be surprised by this pattern, since non-grouping animals are not necessarily non-social, and stand to benefit from attending to and responding to social information in the same ways that group-living species do. The article goes on to ask what non-grouping species can tell us about the evolution and development of social learning. First, while social learning may be based on the same cognitive processes as other kinds of learning, albeit with social stimuli, sensory organs and brain regions associated with detection and motivation to respond to social information may be under selection. Non-grouping species may provide useful comparison taxa in phylogenetic analyses investigating if and how the social environment drives selection on these input channels. Second, non-grouping species may be ideal candidates for exploring how ontogenetic experience of social cues shapes the development of social learning, allowing researchers to avoid some of the negative welfare implications associated with raising group-living animals under restricted social conditions. Finally, while non-grouping species may be capable of learning socially under experimental conditions, there is a need to consider how non-grouping restricts access to learning opportunities under natural conditions and whether this places a functional constraint on what non-grouping animals actually learn socially in the wild.
Collapse
Affiliation(s)
- Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| |
Collapse
|
3
|
Smart sharks: a review of chondrichthyan cognition. Anim Cogn 2023; 26:175-188. [PMID: 36394656 PMCID: PMC9877065 DOI: 10.1007/s10071-022-01708-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
450 million years of evolution have given chondrichthyans (sharks, rays and allies) ample time to adapt perfectly to their respective everyday life challenges and cognitive abilities have played an important part in that process. The diversity of niches that sharks and rays occupy corresponds to matching diversity in brains and behaviour, but we have only scratched the surface in terms of investigating cognition in this important group of animals. The handful of species that have been cognitively assessed in some detail over the last decade have provided enough data to safely conclude that sharks and rays are cognitively on par with most other vertebrates, including mammals and birds. Experiments in the lab as well as in the wild pose their own unique challenges, mainly due to the handling and maintenance of these animals as well as controlling environmental conditions and elimination of confounding factors. Nonetheless, significant advancements have been obtained in the fields of spatial and social cognition, discrimination learning, memory retention as well as several others. Most studies have focused on behaviour and the underlying neural substrates involved in cognitive information processing are still largely unknown. Our understanding of shark cognition has multiple practical benefits for welfare and conservation management but there are obvious gaps in our knowledge. Like most marine animals, sharks and rays face multiple threats. The effects of climate change, pollution and resulting ecosystem changes on the cognitive abilities of sharks and stingrays remain poorly investigated and we can only speculate what the likely impacts might be based on research on bony fishes. Lastly, sharks still suffer from their bad reputation as mindless killers and are heavily targeted by commercial fishing operations for their fins. This public relations issue clouds people's expectations of shark intelligence and is a serious impediment to their conservation. In the light of the fascinating results presented here, it seems obvious that the general perception of sharks and rays as well as their status as sentient, cognitive animals, needs to be urgently revisited.
Collapse
|
4
|
Perryman RJ, Mourier J, Venables SK, Tapilatu RF, Setyawan E, Brown C. Reef manta ray social dynamics depend on individual differences in behaviour. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Shark habituation to a food-related olfactory cue. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Frankish CK, Manica A, Clay TA, Wood AG, Phillips RA. Ontogeny of movement patterns and habitat selection in juvenile albatrosses. OIKOS 2022. [DOI: 10.1111/oik.09057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caitlin K. Frankish
- British Antarctic Survey, Natural Environment Research Council Cambridge UK
- Dept of Zoology, Univ. of Cambridge Cambridge UK
| | | | - Thomas A. Clay
- School of Environmental Sciences, Univ. of Liverpool Liverpool UK
- Inst. of Marine Sciences, Univ. of California Santa Cruz Santa Cruz CA USA
| | - Andrew G. Wood
- British Antarctic Survey, Natural Environment Research Council Cambridge UK
| | | |
Collapse
|
7
|
Affiliation(s)
- Mélisande Aellen
- Department of Behavioural Ecology University of Neuchâtel Neuchâtel Switzerland
| | - Judith M. Burkart
- Anthropological Institute and Museum University of Zürich Zürich Switzerland
| | - Redouan Bshary
- Department of Behavioural Ecology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
8
|
|
9
|
Sheppard CE, Heaphy R, Cant MA, Marshall HH. Individual foraging specialization in group-living species. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Tóth Z, Jaloveczki B. Tutors do not facilitate rapid resource exploitation in temporary tadpole aggregations. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202288. [PMID: 34040788 PMCID: PMC8113892 DOI: 10.1098/rsos.202288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The utilization of social cues is usually considered an important adaptation to living in social groups, but recent evidence suggests that social information use may be more prevalent in the animal kingdom than previously thought. However, it is debated whether such information can efficiently diffuse in temporary aggregations of non-grouping individuals where social cohesion does not facilitate information transmission. Here, we provide experimental evidence that a simple social cue, the movement of conspecifics in a structured environment affected individuals' spatial decisions in common frog (Rana temporaria) tadpoles and thereby facilitated the discovery rate of a novel food patch. However, this was true only in those tadpole collectives that consisted solely of untutored individuals. In those collectives where tutors with prior experience with the presented food type were also present, this social effect was negligible most probably due to the difference in activity between naive and tutor individuals. We also showed that the proportion of tadpoles that discovered the food patch was higher in the control than in the tutored collectives, while the proportion of feeding tadpoles was only marginally higher in the latter collectives. Our findings indicate that social information use can influence resource acquisition in temporary aggregations of non-grouping animals, but individual differences in satiety may hinder effective information spread associated with exploitable food patches.
Collapse
Affiliation(s)
- Zoltán Tóth
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, ELKH, Budapest, Hungary
| | - Boglárka Jaloveczki
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, ELKH, Budapest, Hungary
| |
Collapse
|
11
|
de Azevedo CS, Young RJ. Animal Personality and Conservation: Basics for Inspiring New Research. Animals (Basel) 2021; 11:ani11041019. [PMID: 33916547 PMCID: PMC8065675 DOI: 10.3390/ani11041019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary The study of animal personality is important to conserve animals because it can help in selecting the most appropriate individuals to be released into the wild. Individuals not so bold or aggressive, less stressed, who explore their new environment with greater caution are often more likely to survive after release into the wild. In contrast, bolder and more aggressive animals reproduce more successfully and, therefore, can be released with the aim of rapid repopulation of an area. These and other aspects of how animal personality can help in conservation programs, as well as how to collect personality data are covered in this paper. Abstract The number of animal species threatened with extinction are increasing every year, and biologists are conducting animal translocations, as one strategy, to try to mitigate this situation. Furthermore, researchers are evaluating methods to increase translocation success, and one area that shows promise is the study of animal personality. Animal personality can be defined as behavioral and physiological differences between individuals of the same species, which are stable in time and across different contexts. In the present paper, we discuss how animal personality can increase the success of translocation, as well as in the management of animals intended for translocation by evaluating personality characteristics of the individuals. Studies of the influence of birthplace, parental behavior, stress resilience, and risk assessment can be important to select the most appropriate individuals to be released. Finally, we explain the two methods used to gather personality data.
Collapse
Affiliation(s)
- Cristiano Schetini de Azevedo
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, s/n Bauxita, Ouro Preto, MG 35.400-000, Brazil
- Correspondence:
| | - Robert John Young
- School of Science, Engineering and Environment, University of Salford Manchester, Peel Building—Room G51, Salford M5 4WT, UK;
| |
Collapse
|
12
|
Individual behavioural traits not social context affects learning about novel objects in archerfish. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02996-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Learning can enable rapid behavioural responses to changing conditions but can depend on the social context and behavioural phenotype of the individual. Learning rates have been linked to consistent individual differences in behavioural traits, especially in situations which require engaging with novelty, but the social environment can also play an important role. The presence of others can modulate the effects of individual behavioural traits and afford access to social information that can reduce the need for ‘risky’ asocial learning. Most studies of social effects on learning are focused on more social species; however, such factors can be important even for less-social animals, including non-grouping or facultatively social species which may still derive benefit from social conditions. Using archerfish, Toxotes chatareus, which exhibit high levels of intra-specific competition and do not show a strong preference for grouping, we explored the effect of social contexts on learning. Individually housed fish were assayed in an ‘open-field’ test and then trained to criterion in a task where fish learnt to shoot a novel cue for a food reward—with a conspecific neighbour visible either during training, outside of training or never (full, partial or no visible presence). Time to learn to shoot the novel cue differed across individuals but not across social context. This suggests that social context does not have a strong effect on learning in this non-obligatory social species; instead, it further highlights the importance that inter-individual variation in behavioural traits can have on learning.
Significance statement
Some individuals learn faster than others. Many factors can affect an animal’s learning rate—for example, its behavioural phenotype may make it more or less likely to engage with novel objects. The social environment can play a big role too—affecting learning directly and modifying the effects of an individual’s traits. Effects of social context on learning mostly come from highly social species, but recent research has focused on less-social animals. Archerfish display high intra-specific competition, and our study suggests that social context has no strong effect on their learning to shoot novel objects for rewards. Our results may have some relevance for social enrichment and welfare of this increasingly studied species, suggesting there are no negative effects of short- to medium-term isolation of this species—at least with regards to behavioural performance and learning tasks.
Collapse
|
13
|
Perryman RJ, Carpenter M, Lie E, Sofronov G, Marshall AD, Brown C. Reef manta ray cephalic lobe movements are modulated during social interactions. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02973-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Heinrich D, Dhellemmes F, Guttridge TL, Smukall M, Brown C, Rummer J, Gruber S, Huveneers C. Short-term impacts of daily feeding on the residency, distribution and energy expenditure of sharks. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Sampaio E, Ramos CS, Bernardino BLM, Bleunven M, Augustin ML, Moura É, Lopes VM, Rosa R. Neurally underdeveloped cuttlefish newborns exhibit social learning. Anim Cogn 2021; 24:23-32. [PMID: 32651650 DOI: 10.1007/s10071-020-01411-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/01/2020] [Accepted: 07/03/2020] [Indexed: 01/05/2023]
Abstract
Learning can occur through self-experience with the environment, or through the observation of others. The latter allows for adaptive behaviour without trial-and-error, thus maximizing individual fitness. Perhaps given their mostly solitary lifestyle, cuttlefish have seldomly been tested under observational learning scenarios. Here we used a multi-treatment design to disentangle if and how neurally immature cuttlefish Sepia officinalis hatchlings (up to 5 days) incorporate social information into their decision-making, when performing a task where inhibition of predatory behaviour is learned. In the classical social learning treatment using pre-trained demonstrators, observers did not register any predatory behaviour. In the inhibition by social learning treatment, using naïve (or sham) demonstrators, more observers than demonstrators learned the task, while also reaching learning criterion in fewer trials, and performing less number of attacks per trial. Moreover, the performance of demonstrator-observer pairs was highly correlated, indicating that the mere presence of conspecifics did not explain our results by itself. Additionally, observers always reported higher latency time to attack during trials, a trend that was reversed in the positive controls. Lastly, pre-exposure to the stimulus did not improve learning rates. Our findings reveal the vicarious capacity of these invertebrate newborns to learn modulation (inhibition) of predatory behaviour, potentially through emulation (i.e. affordance learning). Despite ongoing changes on neural organization during early ontogeny, cognitively demanding forms of learning are already present in cuttlefish newborns, facilitating behavioural adaptation at a critical life stage, and potentially improving individual fitness in the environment.
Collapse
Affiliation(s)
- Eduardo Sampaio
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal.
- Department of Collective Behaviour, Max Planck Institute for Animal Behavior, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
| | - Catarina S Ramos
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Bruna L M Bernardino
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Maela Bleunven
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Marta L Augustin
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Érica Moura
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Vanessa M Lopes
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| |
Collapse
|
16
|
Tóth Z, Jaloveczki B, Tarján G. Diffusion of Social Information in Non-grouping Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.586058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent findings indicate that the utilization of social information, produced inadvertently by other individuals through their spatial location and/or interaction with the environment, may be ubiquitous in the animal kingdom. If so, social information-mediated effects on population growth and interspecies interactions may be more prevalent than previously thought. However, little is known about how social information may spread among non-grouping individuals, i.e., in animals that do not form cohesive groups and therefore social attraction among group-mates does not facilitate information diffusion. Are there any perception-related, temporal, and/or spatial parameters that may facilitate or limit the spread of social information in temporary aggregations or among dispersed individuals in a population? We argue that living in cohesive groups is not necessarily required for the diffusion of social information and for social information-mediated effects to emerge in a population. We propose that while learning complex problem-solving techniques socially is less likely to occur in non-grouping animals, the spread of adaptive responses to social stimuli, especially to non-visual cues, can be common and may affect population, and/or community dynamics in a wide range of taxa. We also argue that network-based diffusion analysis could be a suitable analytical method for studying information diffusion in future investigations, providing comparable estimations of social effects on information spread to previous studies on group-living animals. We conclude that more studies are warranted to verify what intrinsic and extrinsic factors influence information propagation among incidentally and/or indirectly interacting individuals if we are to better understand the role of social information in animal populations and how the social and ecological characteristics of species are related to information spread in natural communities.
Collapse
|
17
|
Legaspi C, Miranda J, Labaja J, Snow S, Ponzo A, Araujo G. In-water observations highlight the effects of provisioning on whale shark behaviour at the world's largest whale shark tourism destination. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200392. [PMID: 33489251 PMCID: PMC7813242 DOI: 10.1098/rsos.200392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/30/2020] [Indexed: 05/11/2023]
Abstract
The whale shark is the world's largest fish that forms predictable aggregations across its range, many of which support tourism industries. The largest non-captive provisioned whale shark destination globally is at Oslob, Philippines, where more than 500 000 tourists visit yearly. There, the sharks are provisioned daily, year-round, allowing the human-shark interaction in nearshore waters. We used in-water behavioural observations of whale sharks between 2015 and 2017 to understand the relationship between external stimuli and shark behaviour, whether frequency of visits at the site can act as a predictor of behaviour, and the tourist compliance to the code of conduct. Mixed effects models revealed that the number of previous visits at the site was a strong predictor of whale shark behaviour, and that provisioned sharks were less likely to exhibit avoidance. Compliance was poor, with 93% of surveys having people less than 2 m from the animal, highlighting overcrowding of whale sharks at Oslob. Given the behavioural implications to whale sharks highlighted here and the local community's reliance on the tourism industry, it is imperative to improve management strategies to increase tourist compliance and strive for sustainable tourism practices.
Collapse
Affiliation(s)
- Christine Legaspi
- Large Marine Vertebrates Research Institute Philippines, Cagulada Compound, Brgy. Tejero, Jagna, Bohol 6308, Philippines
| | | | | | | | | | | |
Collapse
|
18
|
Heinrich DDU, Vila Pouca C, Brown C, Huveneers C. Effects of reward magnitude and training frequency on the learning rates and memory retention of the Port Jackson shark Heterodontus portusjacksoni. Anim Cogn 2020; 23:939-949. [PMID: 32524291 DOI: 10.1007/s10071-020-01402-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022]
Abstract
The development of adaptive responses to novel situations via learning has been demonstrated in a wide variety of animal taxa. However, knowledge on the learning abilities of one of the oldest extant vertebrate groups, Chondrichthyes, remains limited. With the increasing interest in global wildlife tourism and shark feeding operations, it is important to understand the capacities of these animals to form associations between human activities and food. We used an operant conditioning regime with a simple spatial cognitive task to investigate the effects of reinforcement frequency and reward magnitude on the learning performance and memory retention of Port Jackson sharks (Heterodontus portusjacksoni). Twenty-four Port Jackson sharks were assigned one of four treatments differing in reward magnitude and reinforcement frequency (large magnitude-high frequency; large magnitude-low frequency; small magnitude-high frequency; small magnitude-low frequency). The sharks were trained over a 21-day period to compare the number of days that it took to learn to pass an assigned door to feed. Sharks trained at a high reinforcement frequency demonstrated faster learning rates and a higher number of passes through the correct door at the end of the trials, while reward magnitude had limited effects on learning rate. This suggests that a reduction in reinforcement frequency during tourism-related feeding operations is likely to be more effective in reducing the risk of sharks making associations with food than limiting the amount of food provided.
Collapse
Affiliation(s)
- Dennis D U Heinrich
- College of Science and Engineering, Flinders University, Sturt Road, Adelaide, SA, Australia.
| | - Catarina Vila Pouca
- Zoological Institute, Stockholm University, 10691, Stockholm, Sweden.,Behavioural Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, Innovation Drive, Sydney, NSW, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Sturt Road, Adelaide, SA, Australia
| |
Collapse
|