1
|
Morford J, Gagliardo A, Pollonara E, Guilford T. Homing pigeon navigational ontogeny: no evidence that exposure to a novel release site is sufficient for learning. Anim Behav 2024; 214:157-164. [PMID: 39469529 PMCID: PMC11512678 DOI: 10.1016/j.anbehav.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 04/25/2024] [Indexed: 10/30/2024]
Abstract
The navigational mechanisms of homing pigeons, Columba livia, have been extensively studied and represent a useful model for the navigation of birds and other animals. Pigeons navigate with an olfactory map and sun compass from unfamiliar areas and, in familiar areas, are largely guided by visual landscape cues, following stereotyped and idiosyncratic routes. However, the mechanisms by which they gain familiarity, improve their navigation and transition between navigational strategies during learning are not fully understood. Addressing these outstanding questions in this navigational model will help to improve our understanding of navigational ontogeny. We sought to investigate whether passive exposure to the cues at a site, without release, was sufficient for navigational learning, given that pigeons can determine the home direction before taking off. We exposed pigeons to cues at a novel site before returning them to the site the next day and releasing them alongside controls. We found no differences in the directional distributions, mean vector lengths, virtual vanishing times, efficiency indices or homing efficiency indices between birds that had and had not previously visited the site. We therefore found no evidence to suggest that passive exposure to the cues at a novel site was sufficient to facilitate a detectable improvement in navigational performance. There are three possible explanations for this result: first, a larger sample size would have detected a weak effect of learning; second, passive exposure to a release site is insufficient to generate navigational learning; and third, pigeons learn from passive exposure but do not rely upon this information, showing no difference in performance, despite learning. We discuss these three explanations with reference to previous findings on navigational learning in homing pigeons. We suggest that experiments should continue to examine navigational ontogeny in homing pigeons to help address this major problem for the field of navigation.
Collapse
Affiliation(s)
- Joe Morford
- Department of Biology, University of Oxford, Oxford, U.K
| | | | | | - Tim Guilford
- Department of Biology, University of Oxford, Oxford, U.K
| |
Collapse
|
2
|
Cioccarelli S, Giunchi D, Pollonara E, Casini G, Bingman VP, Gagliardo A. GPS tracking technology and re-visiting the relationship between the avian visual Wulst and homing pigeon navigation. Behav Brain Res 2024; 465:114971. [PMID: 38552743 DOI: 10.1016/j.bbr.2024.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Within their familiar areas homing pigeons rely on familiar visual landscape features and landmarks for homing. However, the neural basis of visual landmark-based navigation has been so far investigated mainly in relation to the role of the hippocampal formation. The avian visual Wulst is the telencephalic projection field of the thalamofugal pathway that has been suggested to be involved in processing lateral visual inputs that originate from the far visual field. The Wulst is therefore a good candidate for a neural structure participating in the visual control of familiar visual landmark-based navigation. We repeatedly released and tracked Wulst-lesioned and control homing pigeons from three sites about 10-15 km from the loft. Wulst lesions did not impair the ability of the pigeons to orient homeward during the first release from each of the three sites nor to localise the loft within the home area. In addition, Wulst-lesioned pigeons displayed unimpaired route fidelity acquisition to a repeated homing path compared to the intact birds. However, compared to control birds, Wulst-lesioned pigeons displayed persistent oscillatory flight patterns across releases, diminished attention to linear (leading lines) landscape features, such as roads and wood edges, and less direct flight paths within the home area. Differences and similarities between the effects of Wulst and hippocampal lesions suggest that although the visual Wulst does not seem to play a direct role in the memory representation of a landscape-landmark map, it does seem to participate in influencing the perceptual construction of such a map.
Collapse
Affiliation(s)
| | - Dimitri Giunchi
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | | | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA; J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| | - Anna Gagliardo
- Department of Biology, University of Pisa, Pisa 56126, Italy.
| |
Collapse
|
3
|
Bingman VP, Gagliardo A. A different perspective on avian hippocampus function: Visual-spatial perception. Learn Behav 2024; 52:60-68. [PMID: 37653225 DOI: 10.3758/s13420-023-00601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
The behavioral and neural mechanisms that support spatial cognition have been an enduring interest of psychologists, and much of that enduring interest is attributable to the groundbreaking research of Ken Cheng. One manifestation of this interest, inspired by the idea of studying spatial cognition under natural field conditions, has been research carried out to understand the role of the avian hippocampal formation (HF) in supporting homing pigeon navigation. Emerging from that research has been the conclusion that the role of HF in homing pigeon navigation aligns well with the canonical narrative of a hippocampus important for spatial memory and the implementation of such memories to support navigation. However, recently an accumulation of disparate observations has prompted a rethinking of the avian HF as a structure also important in shaping visual-spatial perception or attention antecedent to any memory processing. In this perspective paper, we summarize field observations contrasting the behavior of intact and HF-lesioned homing pigeons from several studies, based primarily on GPS-recorded flight paths, that support a recharacterization of HF's functional profile to include visual-spatial perception. Although admittedly still speculative, we hope the offered perspective will motivate controlled, experimental-laboratory studies to further test the hypothesis of a HF important for visual-perceptual integration, or scene construction, of landscape elements in support of navigation.
Collapse
Affiliation(s)
- Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, 43403, USA.
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | | |
Collapse
|
4
|
Yang L, Chen X, Yang L, Li M, Shang Z. Phase-Amplitude Coupling between Theta Rhythm and High-Frequency Oscillations in the Hippocampus of Pigeons during Navigation. Animals (Basel) 2024; 14:439. [PMID: 38338082 PMCID: PMC10854523 DOI: 10.3390/ani14030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Navigation is a complex task in which the hippocampus (Hp), which plays an important role, may be involved in interactions between different frequency bands. However, little is known whether this cross-frequency interaction exists in the Hp of birds during navigation. Therefore, we examined the electrophysiological characteristics of hippocampal cross-frequency interactions of domestic pigeons (Columba livia domestica) during navigation. Two goal-directed navigation tasks with different locomotor modes were designed, and the local field potentials (LFPs) were recorded for analysis. We found that the amplitudes of high-frequency oscillations in Hp were dynamically modulated by the phase of co-occurring theta-band oscillations both during ground-based maze and outdoor flight navigation. The high-frequency amplitude sub-frequency bands modulated by the hippocampal theta phase were different at different tasks, and this process was independent of the navigation path and goal. These results suggest that phase-amplitude coupling (PAC) in the avian Hp may be more associated with the ongoing cognitive demands of navigational processes. Our findings contribute to the understanding of potential mechanisms of hippocampal PAC on multi-frequency informational interactions in avian navigation and provide valuable insights into cross-species evolution.
Collapse
Affiliation(s)
- Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Xi Chen
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Lifang Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Cioccarelli S, Bianchi B, Giunchi D, Gagliardo A. Use of the sun compass by monocularly occluded homing pigeons in a food localisation task in an outdoor arena. Anim Cogn 2023; 26:1985-1995. [PMID: 37815729 PMCID: PMC10769948 DOI: 10.1007/s10071-023-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Functional asymmetries of the avian visual system can be studied in monocularly occluded birds, as their hemispheres are largely independent. Right and left monocularly occluded homing pigeons and control birds under binocular view have been trained in a food localisation task in an octagonal outdoor arena provided with one coloured beacon on each wall. The three groups were tested after the removal of the visual beacons, so to assess their sun compass learning abilities. Pigeons using the left eye/right hemisphere system exhibited slower learning compared to the other monocular group. During the test in the arena void of visual beacons, the three groups of birds, regardless of their visual condition, were generally able to identify the training sector by exclusively relying on sun compass information. However, the directional choices of the pigeons with the left eye/right hemisphere in use were significantly affected by the removal of the beacons, while both control pigeons and birds with the right eye/left hemisphere in use displayed unaltered performances during the test. A subsample of pigeons of each group were re-trained in the octagonal arena with visual beacons present and tested after the removal of visual beacons after a 6 h fast clock-shift treatment. All birds displayed the expected deflection consistent to the sun compass use. While birds using either the left or the right visual systems were equally able to learn a sun compass-mediated spatial task, the left eye/right hemisphere visual system displayed an advantage in relying on visual beacons.
Collapse
Affiliation(s)
- Sara Cioccarelli
- Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Benedetta Bianchi
- Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Dimitri Giunchi
- Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Anna Gagliardo
- Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy.
| |
Collapse
|
6
|
Williams D. Eagle eyed or bird brained? Eye (Lond) 2023; 37:2426-2430. [PMID: 37353509 PMCID: PMC10397276 DOI: 10.1038/s41433-023-02568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/25/2023] Open
Abstract
The importance of the visual system to birds for behaviours from feeding, mate choice, flying, navigation and determination of seasons, together with the presence of photoreceptors in the retina, the pineal and the brain, render the avian visual system a particularly fruitful model for understanding of eye-brain interactions. In this review we will particularly focus on the pigeon, since here we have a brain stereotactically mapped and a genome fully sequenced, together with a particular bird, the homing pigeon, with remarkable ability to navigate over hundreds of miles and return to exactly the same roosting site with exceptional precision. We might denigrate the avian species by the term bird brained, but here are animals with phenomenal abilities to use their exceptional vision, their eagle eyedness, to best advantage.
Collapse
|
7
|
Deconstructing the flight paths of hippocampal-lesioned homing pigeons as they navigate near home offers insight into spatial perception and memory without a hippocampus. Behav Brain Res 2023; 436:114073. [DOI: 10.1016/j.bbr.2022.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
|
8
|
Gagliardo A, Pollonara E, Casini G, Bingman VP. Unilateral hippocampal lesions and the navigational performance of homing pigeons as revealed by GPS-tracking. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2152105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | | | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
9
|
Space, the original frontier. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Healy SD, Patton BW. It Began in Ponds and Rivers: Charting the Beginnings of the Ecology of Fish Cognition. Front Vet Sci 2022; 9:823143. [PMID: 35187149 PMCID: PMC8850302 DOI: 10.3389/fvets.2022.823143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
But fish cognitive ecology did not begin in rivers and streams. Rather, one of the starting points for work on fish cognitive ecology was work done on the use of visual cues by homing pigeons. Prior to working with fish, Victoria Braithwaite helped to establish that homing pigeons rely not just on magnetic and olfactory cues but also on visual cues for successful return to their home loft. Simple, elegant experiments on homing established Victoria's ability to develop experimental manipulations to examine the role of visual cues in navigation by fish in familiar areas. This work formed the basis of a rich seam of work whereby a fish's ecology was used to propose hypotheses and predictions as to preferred cue use, and then cognitive abilities in a variety of fish species, from model systems (Atlantic salmon and sticklebacks) to the Panamanian Brachyraphis episcopi. Cognitive ecology in fish led to substantial work on fish pain and welfare, but was never left behind, with some of Victoria's last work addressed to determining the neural instantiation of cognitive variation.
Collapse
Affiliation(s)
- Susan D. Healy
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, United Kingdom
- *Correspondence: Susan D. Healy
| | - B. Wren Patton
- Department of Ecosystem Science and Management, Penn State University, State College, PA, United States
| |
Collapse
|
11
|
Zein B, Long JA, Safi K, Kölzsch A, Wikelski M, Kruckenberg H, Demšar U. Simulation experiment to test strategies of geomagnetic navigation during long-distance bird migration. MOVEMENT ECOLOGY 2021; 9:46. [PMID: 34526152 PMCID: PMC8442449 DOI: 10.1186/s40462-021-00283-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Different theories suggest birds may use compass or map navigational systems associated with Earth's magnetic intensity or inclination, especially during migratory flights. These theories have only been tested by considering properties of the Earth's magnetic field at coarse temporal scales, typically ignoring the temporal dynamics of geomagnetic values that may affect migratory navigational capacity. METHODS We designed a simulation experiment to study if and how birds use the geomagnetic field during migration by using both high resolution GPS tracking data and geomagnetic data at relatively fine spatial and temporal resolutions in comparison to previous studies. Our simulations use correlated random walks (CRW) and correlated random bridge (CRB) models to model different navigational strategies based on underlying dynamic geomagnetic data. We translated navigational strategies associated with geomagnetic cues into probability surfaces that are included in the random walk models. Simulated trajectories from these models were compared to the actual GPS trajectories of migratory birds using 3 different similarity measurements to evaluate which of the strategies was most likely to have occurred. RESULTS AND CONCLUSION We designed a simulation experiment which can be applied to different wildlife species under varying conditions worldwide. In the case of our example species, we found that a compass-type strategy based on taxis, defined as movement towards an extreme value, produced the closest and most similar trajectories when compared to original GPS tracking data in CRW models. Our results indicate less evidence for map navigation (constant heading and bi-gradient taxis navigation). Additionally, our results indicate a multifactorial navigational mechanism necessitating more than one cue for successful navigation to the target. This is apparent from our simulations because the modelled endpoints of the trajectories of the CRW models do not reach close proximity to the target location of the GPS trajectory when simulated with geomagnetic navigational strategies alone. Additionally, the magnitude of the effect of the geomagnetic cues during navigation in our models was low in our CRB models. More research on the scale effects of the geomagnetic field on navigation, along with temporally varying geomagnetic data could be useful for further improving future models.
Collapse
Affiliation(s)
- Beate Zein
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, KY16 9AL, St Andrews, Scotland, UK.
| | - Jed A Long
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, KY16 9AL, St Andrews, Scotland, UK
- Department of Geography & Environment, Western University, London, ON, Canada
| | - Kamran Safi
- Department of Migration, MPI of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andrea Kölzsch
- Department of Migration, MPI of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Institute for Wetlands and Waterbird Research E.V, Verden (Aller), Germany
| | - Martin Wikelski
- Department of Migration, MPI of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457, Konstanz, Germany
| | - Helmut Kruckenberg
- Institute for Wetlands and Waterbird Research E.V, Verden (Aller), Germany
| | - Urška Demšar
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, KY16 9AL, St Andrews, Scotland, UK
| |
Collapse
|
12
|
Gagliardo A, Colombo S, Pollonara E, Casini G, Rossino MG, Wikelski M, Bingman VP. GPS-profiling of retrograde navigational impairments associated with hippocampal lesion in homing pigeons. Behav Brain Res 2021; 412:113408. [PMID: 34111471 DOI: 10.1016/j.bbr.2021.113408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
The avian hippocampal formation (HF) is homologous to the mammalian hippocampus and plays a central role in the control of spatial cognition. In homing pigeons, HF supports navigation by familiar landmarks and landscape features. However, what has remained relatively unexplored is the importance of HF for the retention of previously acquired spatial information. For example, to date, no systematic GPS-tracking studies on the retention of HF-dependent navigational memory in homing pigeons have been performed. Therefore, the current study was designed to compare the pre- and post-surgical navigational performance of sham-lesioned control and HF-lesioned pigeons tracked from three different sites located in different directions with respect to home. The pre- and post-surgical comparison of the pigeons' flight paths near the release sites and before reaching the area surrounding the home loft (4 km radius from the loft) revealed that the control and HF-lesioned pigeons displayed similarly successful retention. By contrast, the HF-lesioned pigeons displayed dramatically and consistently impaired retention in navigating to their home loft during the terminal phase of the homing flight near home, i.e., where navigation is supported by memory for landmark and landscape features. The data demonstrate that HF lesions lead to a dramatic loss of pre-surgically acquired landmark and landscape navigational information while sparing those mechanisms associated with navigation from locations distant from home.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Verner P Bingman
- Department of Psychology, 4Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA; J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
13
|
Gagliardo A, Pollonara E, Wikelski M. The homing pigeons’ olfactory map is affected by geographical barriers. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1878280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Enrica Pollonara
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Martin Wikelski
- Department for Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell 78315, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
14
|
Bonadonna F, Gagliardo A. Not only pigeons: avian olfactory navigation studied by satellite telemetry. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1871967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francesco Bonadonna
- CEFE-CNRS, University of Montpellier, EPHE, IRD, University Paul Valéry Montpellier 3, Montpellier, France
| | | |
Collapse
|
15
|
Gagliardo A, Pollonara E, Casini G, Rossino MG, Wikelski M, Bingman VP. Importance of the hippocampus for the learning of route fidelity in homing pigeons. Biol Lett 2020; 16:20200095. [PMCID: PMC7423047 DOI: 10.1098/rsbl.2020.0095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 09/02/2023] Open
Abstract
The avian hippocampal formation (HF) is thought to regulate map-like memory representations of visual landmarks/landscape features and has more recently been suggested to be similarly important for the perceptual integration of landmarks/landscapes. Aspects of spatial memory and perception likely combine to support the now well-documented ability of homing pigeons to learn to retrace the same route when homing from familiar locations, leading to the prediction that damage to the HF would result in a diminished ability to repeatedly fly a similar route home. HF-lesioned homing pigeons were repeatedly released from three sites to assess the importance of the hippocampus as pigeons gradually learn a familiar route home guided by familiar landmark and landscape features. As expected, control pigeons displayed increasing fidelity to a familiar route home, and by inference, successful perceptual and memory processing of familiar landmarks/landscape features. By contrast, the impoverished route fidelity of the HF-lesioned pigeons indicated an impaired sensitivity to the same landmark/landscape features.
Collapse
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | - Enrica Pollonara
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behaviour, Am Obstberg 1, 78315 Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|