1
|
Sheng K, Foris B, Krahn J, Weary DM, von Keyserlingk MAG. Redefining dominance calculation: Increased competition flattens the dominance hierarchy in dairy cows. J Dairy Sci 2024; 107:7286-7298. [PMID: 38825128 DOI: 10.3168/jds.2023-24587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/15/2024] [Indexed: 06/04/2024]
Abstract
Dominance hierarchies are known for mitigating conflicts and guiding priority of access to limited resources in gregarious animals. The dominance hierarchy of dairy cows is typically investigated using agonistic interactions, often monitored at the feed bunk right after fresh feed delivery when competition is high, resulting in frequent interactions. Yet, the outcome of agonistic interactions during times of high competition may be more influenced by cows' high valuation of fresh feed than their intrinsic attributes, such that the dominance hierarchy constructed using agonistic interactions under high versus low competition times might differ. We tested how the structure of the dominance hierarchy changes in relation to different levels of competition in a dynamic group of 48 lactating dairy cows over 10 mo, with 6 cows exchanged every 16 d, for a total of 159 cows. Using a validated algorithm, we continuously detected the actor and reactor of replacement behaviors in 30 feed bins as cows competed for feed. We also calculated the percentage of occupied feed bins to characterize competition at the moment of each replacement. These data were combined to create hierarchies using Elo ratings, separately for 25 occupancy levels ranging from 13% to 100%. For each 1% rise in feeder occupancy, hierarchy steepness fell by 2.41 × 10-3 ± 9.71 × 10-5 (SE), and the percentage of dyads where both cows replaced each other rose by 0.13% ± 0.01%. At the highest feeder occupancy level in comparison to the lowest one, we observed 7.57% more dyads in which the dominant individual (those that won more interactions at the lowest feeder occupancy) started to lose proportionally more. The magnitude of decrease in the winning rate of the dominant individual in those dyads also got amplified by 1.06 × 10-3% ± 1.37 × 10-4% (SE) for each 1% increase in feeder occupancy. These findings illustrate how inferred hierarchies vary with competition, with high competition flattening the hierarchy due to increased success of subordinate animals. We suggest that during heightened competition, increased valuation of resources can affect competitive success more than the individual's intrinsic dominance attributes. We recommend against calculating dominance hierarchies based on agonistic interactions during periods of high competition alone, and more generally urge researchers to differentiate agonistic interactions based on context when constructing dominance hierarchies.
Collapse
Affiliation(s)
- Kehan Sheng
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Borbala Foris
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Joseph Krahn
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Marina A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.
| |
Collapse
|
2
|
Fedina TY, Cummins ET, Promislow DEL, Pletcher SD. The neuropeptide drosulfakinin enhances choosiness and protects males from the aging effects of social perception. Proc Natl Acad Sci U S A 2023; 120:e2308305120. [PMID: 38079545 PMCID: PMC10743377 DOI: 10.1073/pnas.2308305120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
The motivation to reproduce is a potent natural drive, and the social behaviors that induce it can severely impact animal health and lifespan. Indeed, in Drosophila males, accelerated aging associated with reproduction arises not from the physical act of courtship or copulation but instead from the motivational drive to court and mate. To better understand the mechanisms underlying social effects on aging, we studied male choosiness for mates. We found that increased activity of insulin-producing cells (IPCs) of the fly brain potentiated choosiness without consistently affecting courtship activity. Surprisingly, this effect was not caused by insulins themselves, but instead by drosulfakinin (DSK), another neuropeptide produced in a subset of the IPCs, acting through one of the two DSK receptors, CCKLR-17D1. Activation of Dsk+ IPC neurons also decreased food consumption, while activation of Dsk+ neurons outside of IPCs affected neither choosiness nor feeding, suggesting an overlap between Dsk+neurons modulating choosiness and those influencing satiety. Broader activation of Dsk+ neurons (both within and outside of the IPCs) was required to rescue the detrimental effect of female pheromone exposure on male lifespan, as was the function of both DSK receptors. The same broad set of Dsk+ neurons was found to reinforce normally aversive feeding interactions, but only after exposure to female pheromones, suggesting that perception of the opposite sex gates rewarding properties of these neurons. We speculate that broad Dsk+ neuron activation is associated with states of satiety and social experience, which under stressful conditions is rewarding and beneficial for lifespan.
Collapse
Affiliation(s)
- Tatyana Y. Fedina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Easton T. Cummins
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA98195
- Department of Biology, University of Washington, Seattle, WA98195
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
3
|
Balampekou EI, Koveos DS, Kapranas A, Menexes GC, Kouloussis NA. The Roles of Mating, Age, and Diet in Starvation Resistance in Bactrocera oleae (Olive Fruit Fly). INSECTS 2023; 14:841. [PMID: 37999040 PMCID: PMC10672083 DOI: 10.3390/insects14110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The olive fruit fly (Bactrocera oleae (Rossi) (Diptera: Tephritidae)), although a pest of major economic importance for the olive industry, has not been sufficiently studied with respect to the factors affecting its survival resistance to food deprivation. In the present study, we examined the effect of the interaction between mating status (virgin/mated), age class (11-20/21-30/31-40/41-50), and diet quality (protein plus sugar or only sugar) on starvation resistance in B. oleae under constant laboratory conditions. We conducted a total of 16 treatments (2 × 4 × 2 = 16) for each gender. Our results showed that starvation resistance in B. oleae did not differ significantly between females and males. The main conclusions of our study regarding mating status, age, and diet indicated that mated adults showed much less starvation resistance compared to virgins, younger adults endured longer, and the adults fed a restricted diet endured longer than those fed a full diet. A three-way interaction between mating status, diet, and age class was also identified and was the same for both genders. The interaction between mating status, age class, and diet also had a significant influence on starvation resistance in both sexes.
Collapse
Affiliation(s)
| | | | | | | | - Nikos A. Kouloussis
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.I.B.); (D.S.K.); (A.K.); (G.C.M.)
| |
Collapse
|
4
|
Swami V, Hochstöger S, Kargl E, Stieger S. Hangry in the field: An experience sampling study on the impact of hunger on anger, irritability, and affect. PLoS One 2022; 17:e0269629. [PMID: 35793289 PMCID: PMC9258883 DOI: 10.1371/journal.pone.0269629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
The colloquial term “hangry” refers to the notion that people become angry when hungry, but very little research has directly determined the extent to which the relationship between hunger and negative emotions is robust. Here, we examined associations between everyday experiences of hunger and negative emotions using an experience sampling method. Sixty-four participants from Central Europe completed a 21-day experience sampling phase in which they reported their hunger, anger, irritability, pleasure, and arousal at five time-points each day (total = 9,142 responses). Results indicated that greater levels of self-reported hunger were associated with greater feelings of anger and irritability, and with lower pleasure. These findings remained significant after accounting for participant sex, age, body mass index, dietary behaviours, and trait anger. In contrast, associations with arousal were not significant. These results provide evidence that everyday levels of hunger are associated with negative emotionality and supports the notion of being “hangry”.
Collapse
Affiliation(s)
- Viren Swami
- School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
- Centre for Psychological Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Samantha Hochstöger
- Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Erik Kargl
- Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Stefan Stieger
- Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- * E-mail:
| |
Collapse
|
5
|
Beltrão P, Gomes ACR, Cardoso GC. Collective foraging: experimentally‐increased competition decreases group performance exploiting a permanent resource. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrícia Beltrão
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| | - Ana Cristina R. Gomes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| | - Gonçalo C. Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| |
Collapse
|
6
|
Dehnen T, Arbon JJ, Farine DR, Boogert NJ. How feedback and feed-forward mechanisms link determinants of social dominance. Biol Rev Camb Philos Soc 2022; 97:1210-1230. [PMID: 35150197 DOI: 10.1111/brv.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
In many animal societies, individuals differ consistently in their ability to win agonistic interactions, resulting in dominance hierarchies. These differences arise due to a range of factors that can influence individuals' abilities to win agonistic interactions, spanning from genetically driven traits through to individuals' recent interaction history. Yet, despite a century of study since Schjelderup-Ebbe's seminal paper on social dominance, we still lack a general understanding of how these different factors work together to determine individuals' positions in hierarchies. Here, we first outline five widely studied factors that can influence interaction outcomes: intrinsic attributes, resource value asymmetry, winner-loser effects, dyadic interaction-outcome history and third-party support. A review of the evidence shows that a variety of factors are likely important to interaction outcomes, and thereby individuals' positions in dominance hierarchies, in diverse species. We propose that such factors are unlikely to determine dominance outcomes independently, but rather form part of feedback loops whereby the outcomes of previous agonistic interactions (e.g. access to food) impact factors that might be important in subsequent interactions (e.g. body condition). We provide a conceptual framework that illustrates the multitude potential routes through which such feedbacks can occur, and how the factors that determine the outcomes of dominance interactions are highly intertwined and thus rarely act independently of one another. Further, we generalise our framework to include multi-generational feed-forward mechanisms: how interaction outcomes in one generation can influence the factors determining interaction outcomes in the next generation via a range of parental effects. This general framework describes how interaction outcomes and the factors determining them are linked within generations via feedback loops, and between generations via feed-forward mechanisms. We then highlight methodological approaches that will facilitate the study of feedback loops and dominance dynamics. Lastly, we discuss how our framework could shape future research, including: how feedbacks generate variation in the factors discussed, and how this might be studied experimentally; how the relative importance of different feedback mechanisms varies across timescales; the role of social structure in modulating the effect of feedbacks on hierarchy structure and stability; and the routes of parental influence on the dominance status of offspring. Ultimately, by considering dominance interactions as part of a dynamic feedback system that also feeds forward into subsequent generations, we will understand better the factors that structure dominance hierarchies in animal groups.
Collapse
Affiliation(s)
- Tobit Dehnen
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Josh J Arbon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany
| | - Neeltje J Boogert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| |
Collapse
|
7
|
A resource-poor developmental diet reduces adult aggression in male Drosophila melanogaster. Behav Ecol Sociobiol 2021; 75:110. [PMID: 34720349 PMCID: PMC8549984 DOI: 10.1007/s00265-021-03050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/01/2022]
Abstract
Aggressive behaviours occur throughout the animal kingdom and agonistic contests often govern access to resources. Nutrition experienced during development has the potential to influence aggressive behaviours in adults through effects on growth, energy budgets and an individual’s internal state. In particular, resource-poor developmental nutrition might decrease adult aggression by limiting growth and energy budgets, or alternatively might increase adult aggression by enhancing motivation to compete for resources. However, the direction of this relationship—and effects of developmental nutrition experienced by rivals—remains unknown in most species, limiting understanding of how early-life environments contribute to variation in aggression. We investigated these alternative hypotheses by assessing male-male aggression in adult fruit flies, Drosophila melanogaster, that developed on a low-, medium- or high-resource diet, manipulated via yeast content. We found that a low-resource developmental diet reduced the probability of aggressive lunges in adults, as well as threat displays against rivals that developed on a low-resource diet. These effects appeared to be independent of diet-related differences in body mass. Males performed relatively more aggression on a central food patch when facing rivals of a low-resource diet, suggesting that developmental diet affects aggressive interactions through social effects in addition to individual effects. Our finding that resource-poor developmental diets reduce male-male aggression in D. melanogaster is consistent with the idea that resource budgets mediate aggression and in a mass-independent manner. Our study improves understanding of the links between nutrition and aggression. Significance statement Early-life nutrition can influence social behaviours in adults. Aggression is a widespread social behaviour with important consequences for fitness. Using the fruit fly, Drosophila melanogaster, we show that a poor developmental diet reduces aspects of adult aggressive behaviour in males. Furthermore, males perform more aggression near food patches when facing rivals of poor nutrition. This suggests that early-life nutrition affects aggressive interactions through social effects in addition to individual effects.
Collapse
|