1
|
Gaynor KM, Abrahms B, Manlove KR, Oestreich WK, Smith JA. Anthropogenic impacts at the interface of animal spatial and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220527. [PMID: 39230457 PMCID: PMC11449167 DOI: 10.1098/rstb.2022.0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/05/2024] Open
Abstract
Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | | | - Justine A Smith
- Department of Wildlife Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Dodson S, Oestreich WK, Savoca MS, Hazen EL, Bograd SJ, Ryan JP, Fiechter J, Abrahms B. Long-distance communication can enable collective migration in a dynamic seascape. Sci Rep 2024; 14:14857. [PMID: 38937635 PMCID: PMC11211507 DOI: 10.1038/s41598-024-65827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Social information is predicted to enhance the quality of animals' migratory decisions in dynamic ecosystems, but the relative benefits of social information in the long-range movements of marine megafauna are unknown. In particular, whether and how migrants use nonlocal information gained through social communication at the large spatial scale of oceanic ecosystems remains unclear. Here we test hypotheses about the cues underlying timing of blue whales' breeding migration in the Northeast Pacific via individual-based models parameterized by empirical behavioral data. Comparing emergent patterns from individual-based models to individual and population-level empirical metrics of migration timing, we find that individual whales likely rely on both personal and social sources of information about forage availability in deciding when to depart from their vast and dynamic foraging habitat and initiate breeding migration. Empirical patterns of migratory phenology can only be reproduced by models in which individuals use long-distance social information about conspecifics' behavioral state, which is known to be encoded in the patterning of their widely propagating songs. Further, social communication improves pre-migration seasonal foraging performance by over 60% relative to asocial movement mechanisms. Our results suggest that long-range communication enhances the perceptual ranges of migrating whales beyond that of any individual, resulting in increased foraging performance and more collective migration timing. These findings indicate the value of nonlocal social information in an oceanic migrant and suggest the importance of long-distance acoustic communication in the collective migration of wide-ranging marine megafauna.
Collapse
Affiliation(s)
- Stephanie Dodson
- Department of Mathematics, Colby College, Waterville, ME, 04901, USA.
| | | | - Matthew S Savoca
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, 93950, USA
| | - Elliott L Hazen
- Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA, 93940, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Steven J Bograd
- Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA, 93940, USA
| | - John P Ryan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | - Jerome Fiechter
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Briana Abrahms
- Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Hansen MJ, Domenici P, Bartashevich P, Burns A, Krause J. Mechanisms of group-hunting in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1687-1711. [PMID: 37199232 DOI: 10.1111/brv.12973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
Group-hunting is ubiquitous across animal taxa and has received considerable attention in the context of its functions. By contrast much less is known about the mechanisms by which grouping predators hunt their prey. This is primarily due to a lack of experimental manipulation alongside logistical difficulties quantifying the behaviour of multiple predators at high spatiotemporal resolution as they search, select, and capture wild prey. However, the use of new remote-sensing technologies and a broadening of the focal taxa beyond apex predators provides researchers with a great opportunity to discern accurately how multiple predators hunt together and not just whether doing so provides hunters with a per capita benefit. We incorporate many ideas from collective behaviour and locomotion throughout this review to make testable predictions for future researchers and pay particular attention to the role that computer simulation can play in a feedback loop with empirical data collection. Our review of the literature showed that the breadth of predator:prey size ratios among the taxa that can be considered to hunt as a group is very large (<100 to >102 ). We therefore synthesised the literature with respect to these predator:prey ratios and found that they promoted different hunting mechanisms. Additionally, these different hunting mechanisms are also related to particular stages of the hunt (search, selection, capture) and thus we structure our review in accordance with these two factors (stage of the hunt and predator:prey size ratio). We identify several novel group-hunting mechanisms which are largely untested, particularly under field conditions, and we also highlight a range of potential study organisms that are amenable to experimental testing of these mechanisms in connection with tracking technology. We believe that a combination of new hypotheses, study systems and methodological approaches should help push the field of group-hunting in new directions.
Collapse
Affiliation(s)
- Matthew J Hansen
- Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Paolo Domenici
- IBF-CNR, Consiglio Nazionale delle Ricerche, Area di Ricerca San Cataldo, Via G. Moruzzi No. 1, Pisa, 56124, Italy
- IAS-CNR, Località Sa Mardini, Torregrande, Oristano, 09170, Italy
| | - Palina Bartashevich
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, 10115, Germany
- Cluster of Excellence "Science of Intelligence," Technical University of Berlin, Marchstr. 23, Berlin, 10587, Germany
| | - Alicia Burns
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, 10115, Germany
- Cluster of Excellence "Science of Intelligence," Technical University of Berlin, Marchstr. 23, Berlin, 10587, Germany
| | - Jens Krause
- Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, 10115, Germany
- Cluster of Excellence "Science of Intelligence," Technical University of Berlin, Marchstr. 23, Berlin, 10587, Germany
| |
Collapse
|
4
|
Cade DE, Kahane-Rapport SR, Gough WT, Bierlich KC, Linsky JMJ, Calambokidis J, Johnston DW, Goldbogen JA, Friedlaender AS. Minke whale feeding rate limitations suggest constraints on the minimum body size for engulfment filtration feeding. Nat Ecol Evol 2023; 7:535-546. [PMID: 36914772 DOI: 10.1038/s41559-023-01993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/05/2023] [Indexed: 03/16/2023]
Abstract
Bulk filter feeding has enabled gigantism throughout evolutionary history. The largest animals, extant rorqual whales, utilize intermittent engulfment filtration feeding (lunge feeding), which increases in efficiency with body size, enabling their gigantism. The smallest extant rorquals (7-10 m minke whales), however, still exhibit short-term foraging efficiencies several times greater than smaller non-filter-feeding cetaceans, raising the question of why smaller animals do not utilize this foraging modality. We collected 437 h of bio-logging data from 23 Antarctic minke whales (Balaenoptera bonaerensis) to test the relationship of feeding rates (λf) to body size. Here, we show that while ultra-high nighttime λf (mean ± s.d.: 165 ± 40 lunges h-1; max: 236 lunges h-1; mean depth: 28 ± 46 m) were indistinguishable from predictions from observations of larger species, daytime λf (mean depth: 72 ± 72 m) were only 25-40% of predicted rates. Both λf were near the maxima allowed by calculated biomechanical, physiological and environmental constraints, but these temporal constraints meant that maximum λf was below the expected λf for animals smaller than ~5 m-the length of weaned minke whales. Our findings suggest that minimum size for specific filter-feeding body plans may relate broadly to temporal restrictions on filtration rate and have implications for the evolution of filter feeding.
Collapse
Affiliation(s)
- David E Cade
- Institute of Marine Science, University of California, Santa Cruz, CA, USA.
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
| | | | - William T Gough
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - K C Bierlich
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - Jacob M J Linsky
- Institute of Marine Science, University of California, Santa Cruz, CA, USA
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | | - David W Johnston
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | | | - Ari S Friedlaender
- Institute of Marine Science, University of California, Santa Cruz, CA, USA
| |
Collapse
|
5
|
Barlow DR, Klinck H, Ponirakis D, Branch TA, Torres LG. Environmental conditions and marine heatwaves influence blue whale foraging and reproductive effort. Ecol Evol 2023; 13:e9770. [PMID: 36861024 PMCID: PMC9968652 DOI: 10.1002/ece3.9770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 03/01/2023] Open
Abstract
Animal behavior is motivated by the fundamental need to feed and reproduce, and these behaviors can be inferred from spatiotemporal variations in biological signals such as vocalizations. Yet, linking foraging and reproductive effort to environmental drivers can be challenging for wide-ranging predator species. Blue whales are acoustically active marine predators that produce two distinct vocalizations: song and D calls. We examined environmental correlates of these vocalizations using continuous recordings from five hydrophones in the South Taranaki Bight region of Aotearoa New Zealand to investigate call behavior relative to ocean conditions and infer life history patterns. D calls were strongly correlated with oceanographic drivers of upwelling in spring and summer, indicating associations with foraging effort. In contrast, song displayed a highly seasonal pattern with peak intensity in fall, which aligned with the timing of conception inferred from whaling records. Finally, during a marine heatwave, reduced foraging (inferred from D calls) was followed by lower reproductive effort (inferred from song intensity).
Collapse
Affiliation(s)
- Dawn R. Barlow
- Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Sciences, Marine Mammal InstituteOregon State UniversityNewportOregonUSA
| | - Holger Klinck
- K. Lisa Yang Center for Conservation BioacousticsCornell UniversityIthacaNew YorkUSA
- Department of Fisheries, Wildlife, and Conservation Sciences, Marine Mammal InstituteOregon State UniversityNewportOregonUSA
| | - Dimitri Ponirakis
- K. Lisa Yang Center for Conservation BioacousticsCornell UniversityIthacaNew YorkUSA
| | - Trevor A. Branch
- School of Aquatic and Fisheries SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Leigh G. Torres
- Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Sciences, Marine Mammal InstituteOregon State UniversityNewportOregonUSA
| |
Collapse
|
6
|
Barlow DR, Klinck H, Ponirakis D, Holt Colberg M, Torres LG. Temporal occurrence of three blue whale populations in New Zealand waters from passive acoustic monitoring. J Mammal 2022. [DOI: 10.1093/jmammal/gyac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Describing spatial and temporal occurrence patterns of wild animal populations is important for understanding their evolutionary trajectories, population connectivity, and ecological niche specialization, with relevance for effective management. Throughout the world, blue whales produce stereotyped songs that enable identification of separate acoustic populations. We harnessed continuous acoustic recordings from five hydrophones deployed in the South Taranaki Bight (STB) region of Aotearoa New Zealand from January 2016 to February 2018. We examined hourly presence of songs from three different blue whale populations to investigate their contrasting ecological use of New Zealand waters. The New Zealand song was detected year-round with a seasonal cycle in intensity (peak February–July), demonstrating the importance of the region to the New Zealand population as both a foraging ground and potential breeding area. The Antarctic song was present in two distinct peaks each year (June–July; September–October) and predominantly at the offshore recording locations, suggesting northbound and southbound migration between feeding and wintering grounds. The Australian song was only detected during a 10-day period in January 2017, implying a rare vagrant occurrence. We therefore infer that the STB region is the primary niche of the New Zealand population, a migratory corridor for the Antarctic population, and outside the typical range of the Australian population.
Collapse
Affiliation(s)
- Dawn R Barlow
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University , Newport, Oregon 97365 , USA
| | - Holger Klinck
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell University , Ithaca, New York 14850 , USA
- Marine Mammal Institute, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University , Newport, Oregon 97365 , USA
| | - Dimitri Ponirakis
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell University , Ithaca, New York 14850 , USA
| | - Mattea Holt Colberg
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University , Newport, Oregon 97365 , USA
- Department of Integrative Biology, Oregon State University , Corvallis, Oregon 97331 , USA
| | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University , Newport, Oregon 97365 , USA
| |
Collapse
|
7
|
Ryan JP, Benoit‐Bird KJ, Oestreich WK, Leary P, Smith KB, Waluk CM, Cade DE, Fahlbusch JA, Southall BL, Joseph JE, Margolina T, Calambokidis J, DeVogelaere A, Goldbogen JA. Oceanic giants dance to atmospheric rhythms: Ephemeral wind-driven resource tracking by blue whales. Ecol Lett 2022; 25:2435-2447. [PMID: 36197736 PMCID: PMC9827854 DOI: 10.1111/ele.14116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 01/12/2023]
Abstract
Trophic transfer of energy through marine food webs is strongly influenced by prey aggregation and its exploitation by predators. Rapid aggregation of some marine fish and crustacean forage species during wind-driven coastal upwelling has recently been discovered, motivating the hypothesis that predators of these forage species track the upwelling circulation in which prey aggregation occurs. We examine this hypothesis in the central California Current Ecosystem using integrative observations of upwelling dynamics, forage species' aggregation, and blue whale movement. Directional origins of blue whale calls repeatedly tracked upwelling plume circulation when wind-driven upwelling intensified and aggregation of forage species was heightened. Our findings illustrate a resource tracking strategy by which blue whales may maximize energy gain amid ephemeral foraging opportunities. These findings have implications for the ecology and conservation of diverse predators that are sustained by forage populations whose behaviour is responsive to episodic environmental dynamics.
Collapse
Affiliation(s)
- John P. Ryan
- Monterey Bay Aquarium Research InstituteMoss LandingCaliforniaUSA
| | | | - William K. Oestreich
- Monterey Bay Aquarium Research InstituteMoss LandingCaliforniaUSA,Hopkins Marine StationStanford UniversityStanfordCaliforniaUSA
| | - Paul Leary
- Naval Postgraduate SchoolMontereyCaliforniaUSA
| | | | - Chad M. Waluk
- Monterey Bay Aquarium Research InstituteMoss LandingCaliforniaUSA
| | - David E. Cade
- Hopkins Marine StationStanford UniversityStanfordCaliforniaUSA
| | - James A. Fahlbusch
- Hopkins Marine StationStanford UniversityStanfordCaliforniaUSA,Cascadia Research CollectiveOlympiaWashingtonUSA
| | - Brandon L. Southall
- Southall Environmental Associates, Inc.AptosCaliforniaUSA,University of CaliforniaSanta CruzCaliforniaUSA
| | | | | | | | | | | |
Collapse
|
8
|
Oestreich WK, Aiu KM, Crowder LB, McKenna MF, Berdahl AM, Abrahms B. The influence of social cues on timing of animal migrations. Nat Ecol Evol 2022; 6:1617-1625. [DOI: 10.1038/s41559-022-01866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
|
9
|
Fahlbusch JA, Czapanskiy MF, Calambokidis J, Cade DE, Abrahms B, Hazen EL, Goldbogen JA. Blue whales increase feeding rates at fine-scale ocean features. Proc Biol Sci 2022; 289:20221180. [PMID: 35975432 PMCID: PMC9382224 DOI: 10.1098/rspb.2022.1180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Marine predators face the challenge of reliably finding prey that is patchily distributed in space and time. Predators make movement decisions at multiple spatial and temporal scales, yet we have a limited understanding of how habitat selection at multiple scales translates into foraging performance. In the ocean, there is mounting evidence that submesoscale (i.e. less than 100 km) processes drive the formation of dense prey patches that should hypothetically provide feeding hot spots and increase predator foraging success. Here, we integrated environmental remote-sensing with high-resolution animal-borne biologging data to evaluate submesoscale surface current features in relation to the habitat selection and foraging performance of blue whales in the California Current System. Our study revealed a consistent functional relationship in which blue whales disproportionately foraged within dynamic aggregative submesoscale features at both the regional and feeding site scales across seasons, regions and years. Moreover, we found that blue whale feeding rates increased in areas with stronger aggregative features, suggesting that these features indicate areas of higher prey density. The use of fine-scale, dynamic features by foraging blue whales underscores the need to take these features into account when designating critical habitat and may help inform strategies to mitigate the impacts of human activities for the species.
Collapse
Affiliation(s)
- James A. Fahlbusch
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA,Cascadia Research Collective, Olympia, WA, USA
| | - Max F. Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | | | - David E. Cade
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA
| | - Elliott L. Hazen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA,Environmental Research Division, NOAA Southwest Fisheries Science Center, Monterey, CA, USA
| | - Jeremy A. Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
10
|
Viewing animal migration through a social lens. Trends Ecol Evol 2022; 37:985-996. [PMID: 35931583 DOI: 10.1016/j.tree.2022.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Evidence of social learning is growing across the animal kingdom. Researchers have long hypothesized that social interactions play a key role in many animal migrations, but strong empirical support is scarce except in a few unique systems and species. In this review, we aim to catalyze advances in the study of social migrations by synthesizing research across disciplines and providing a framework for understanding when, how, and why social influences shape the decisions animals make during migration. Integrating research across the fields of social learning and migration ecology will advance our understanding of the complex behavioral phenomena of animal migration and help to inform conservation of animal migrations in a changing world.
Collapse
|
11
|
Casey CB, Weindorf S, Levy E, Linsky JMJ, Cade DE, Goldbogen JA, Nowacek DP, Friedlaender AS. Acoustic signalling and behaviour of Antarctic minke whales ( Balaenoptera bonaerensis). ROYAL SOCIETY OPEN SCIENCE 2022; 9:211557. [PMID: 35911199 PMCID: PMC9326272 DOI: 10.1098/rsos.211557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Acoustic signalling is the predominant form of communication among cetaceans. Understanding the behavioural state of calling individuals can provide insights into the specific function of sound production; in turn, this information can aid the evaluation of passive monitoring datasets to estimate species presence, density, and behaviour. Antarctic minke whales are the most numerous baleen whale species in the Southern Ocean. However, our knowledge of their vocal behaviour is limited. Using, to our knowledge, the first animal-borne audio-video documentation of underwater behaviour in this species, we characterize Antarctic minke whale sound production and evaluate the association between acoustic behaviour, foraging behaviour, diel patterns and the presence of close conspecifics. In addition to the previously described downsweep call, we find evidence of three novel calls not previously described in their vocal repertoire. Overall, these signals displayed peak frequencies between 90 and 175 Hz and ranged from 0.2 to 0.8 s on average (90% duration). Additionally, each of the four call types was associated with measured behavioural and environmental parameters. Our results represent a significant advancement in understanding of the life history of this species and improve our capacity to acoustically monitor minke whales in a rapidly changing Antarctic region.
Collapse
Affiliation(s)
- C. B. Casey
- Institute for Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - S. Weindorf
- Institute for Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - E. Levy
- Institute for Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - J. M. J. Linsky
- Institute for Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - D. E. Cade
- Institute for Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA
| | - J. A. Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA
| | - D. P. Nowacek
- Nicholas School of the Environment and Pratt School of Engineering, Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - A. S. Friedlaender
- Institute for Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
- Ocean Sciences Department, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
12
|
Oestreich WK, Abrahms B, McKenna MF, Goldbogen JA, Crowder LB, Ryan JP. Acoustic signature reveals blue whales tune life history transitions to oceanographic conditions. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William K. Oestreich
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| | - Briana Abrahms
- Center for Ecosystem Sentinels Department of Biology University of Washington Seattle WA USA
| | - Megan F. McKenna
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| | - Jeremy A. Goldbogen
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| | - Larry B. Crowder
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| | - John P. Ryan
- Monterey Bay Aquarium Research Institute Moss Landing CA USA
| |
Collapse
|