1
|
Estrada-Angulo A, Verdugo-Insúa M, Escobedo-Gallegos LDG, Castro-Pérez BI, Urías-Estrada JD, Ponce-Barraza E, Mendoza-Cortez D, Ríos-Rincón FG, Monge-Navarro F, Barreras A, Zinn RA, Corona-Gochi L, Plascencia A. Influences of a Supplemental Blend of Essential Oils Plus 25-Hydroxy-Vit-D3 and Zilpaterol Hydrochloride (β2 Agonist) on Growth Performance and Carcass Measures of Feedlot Lambs Finished under Conditions of High Ambient Temperature. Animals (Basel) 2024; 14:1391. [PMID: 38731393 PMCID: PMC11083129 DOI: 10.3390/ani14091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
Forty-eight Pelibuey × Katahdin male intact lambs (25.12 ± 3.79 kg LW) were used in a 70-d growing-finishing trial. Dietary treatments consisted of total mixed corn-based diet supplemented with: (1) no feed additives (Control); (2) 150 mg of essential oils blend plus 0.10 mg of 25-hydroxy-Vit-D3/kg diet offered throughout the 70-d experimental period (EOD3); (3) Control diet fed during the first 35 days and zilpaterol hydrochloride (ZH) supplementation at 6 mg/kg diet offered during the final 35 days of the experiment (32 days with ZH with a withdrawal 3-d before harvest), and (4) basal diet supplemented with EOD3 during first 35 days finishing, and EOD3 in combination with ZH (EOD3 + ZH) during the subsequent 32-days with ZH withdrawal 3 days before harvest. The temperature-humidity index during the experiment averaged 80.4 ± 3.2. There were no treatment interactions (p > 0.20) on growth performance and carcass measures. Supplemental EOD3 did not affect (p = 0.43) dry matter intake (DMI), but increased (p < 0.01) carcass adjusted average daily gain (ADG, 9.2%), gain efficiency (GF, 6.7%), and observed vs. expected dietary net energy for maintenance (NEm, 4.8%) and for gain (NEg, 6.4%). Supplemental ZH did not affect dry matter intake (DMI, p = 0.50) but increased (p < 0.01) carcass adjusted ADG (14.5%), GF (13%) and observed vs. expected dietary NEm (9%) and NEg (11.7%). Compared to control lambs, the combination of both additives increased ADG (24.9%), GF (21.2%), and observed vs. expected dietary NEm and NEg (14.2% and 18.9%, respectively). There were no treatment interactions on carcass characteristics, visceral organ mass, or on gene expression of IGF1, IGF2 and mTOR in longissimus muscle (LM). Supplemental EOD3 increased hot carcass weight (HCW; 4.0%, p < 0.01) but did not affect other carcass measures. Supplemental EOD3 decreased (3%, p = 0.03) intestine mass weight (g intestine/kg empty body weight). Supplemental ZH increased HCW (6%, p < 0.01), dressing percentage (1.7%, p = 0.04), and LM area (9.7%, p < 0.01), and decreased kidney-pelvic-fat percentage (16.2%, p < 0.01), fat thickness (14.7%, p = 0.03), and visceral fat. Compared to controls, the combination of EOD3 with ZH increased HCW (10.2%). It is concluded that growth performance responses to supplemental EOD3 and ZH are additive. Both supplements can be fed in combination without detrimental effects on expected benefits when fed separately. In addition, ZH supplementation improves carcass traits.
Collapse
Affiliation(s)
- Alfredo Estrada-Angulo
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Moisés Verdugo-Insúa
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Lucía de G. Escobedo-Gallegos
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Beatriz I. Castro-Pérez
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Jesús D. Urías-Estrada
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Elizama Ponce-Barraza
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Daniel Mendoza-Cortez
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Francisco G. Ríos-Rincón
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Francisco Monge-Navarro
- Veterinary Science Research Institute, Autonomous University of Baja California, Mexicali 21100, Baja California, Mexico; (F.M.-N.); (A.B.)
| | - Alberto Barreras
- Veterinary Science Research Institute, Autonomous University of Baja California, Mexicali 21100, Baja California, Mexico; (F.M.-N.); (A.B.)
| | - Richard A. Zinn
- Animal Science Department, University of California, Davis, CA 95616, USA;
| | - Luis Corona-Gochi
- Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Alejandro Plascencia
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| |
Collapse
|
2
|
dos Santos de Souza RBM, Soares NMM, Bastos TS, Kaelle GCB, de Oliveira SG, Félix FAP. Effects of dietary supplementation with a blend of functional oils to fecal microbiota, and inflammatory and oxidative responses, of dogs submitted to a periodontal surgical challenge. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Vet Sci 2022; 9:vetsci9090475. [PMID: 36136691 PMCID: PMC9502430 DOI: 10.3390/vetsci9090475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
There is an increasing pressure to identify natural feed additives that improve the productivity and health of livestock, without affecting the quality of derived products. The objective of this study was to evaluate the effects of dietary supplementation with essential oils (EOs) on productive performance, rumen parameters, serum metabolites, and quality of products (meat and milk) derived from small ruminants by means of a meta-analysis. Seventy-four peer-reviewed publications were included in the data set. Weighted mean differences (WMD) between the EOs treatments and the control treatment were used to assess the magnitude of effect. Dietary inclusion of EOs increased (p < 0.05) dry matter intake (WMD = 0.021 kg/d), dry matter digestibility (WMD = 14.11 g/kg of DM), daily weight gain (WMD = 0.008 kg/d), and feed conversion ratio (WMD = −0.111). The inclusion of EOs in small ruminants’ diets decreased (p < 0.05) ruminal ammonia nitrogen concentration (WMD = −0.310 mg/dL), total protozoa (WMD = −1.426 × 105/mL), methanogens (WMD = −0.60 × 107/mL), and enteric methane emissions (WMD = −3.93 L/d) and increased ruminal propionate concentration (WMD = 0.726 mol/100 mol, p < 0.001). The serum urea concentration was lower (WMD = −0.688 mg/dL; p = 0.009), but serum catalase (WMD = 0.204 ng/mL), superoxide dismutase (WMD = 0.037 ng/mL), and total antioxidant capacity (WMD = 0.749 U/mL) were higher (p < 0.05) in response to EOs supplementation. In meat, EOs supplementation decreased (p < 0.05) the cooking loss (WMD = −0.617 g/100 g), malondialdehyde content (WMD = −0.029 mg/kg of meat), yellowness (WMD = −0.316), and total viable bacterial count (WMD = −0.780 CFU/g of meat). There was higher (p < 0.05) milk production (WMD = 0.113 kg/d), feed efficiency (WMD = 0.039 kg/kg), protein (WMD = 0.059 g/100 g), and lactose content in the milk (WMD = 0.100 g/100 g), as well as lower somatic cell counts in milk (WMD = −0.910 × 103 cells/mL) in response to EOs supplementation. In conclusion, dietary supplementation with EOs improves productive performance as well as meat and milk quality of small ruminants. In addition, EOs improve antioxidant status in blood serum and rumen fermentation and decrease environmental impact.
Collapse
|
4
|
A Meta-Analysis of Essential Oils Use for Beef Cattle Feed: Rumen Fermentation, Blood Metabolites, Meat Quality, Performance and, Environmental and Economic Impact. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to see how dietary supplementation with essential oils (EOs) affected rumen fermentation, blood metabolites, growth performance and meat quality of beef cattle through a meta-analysis. In addition, a simulation analysis was conducted to evaluate the effects of EOs on the economic and environmental impact of beef production. Data were extracted from 34 peer-reviewed studies and analyzed using random-effects statistical models to assess the weighted mean difference (WMD) between control and EOs treatments. Dietary supplementation of EOs increased (p < 0.01) dry matter intake (WMD = 0.209 kg/d), final body weight (WMD = 12.843 kg), daily weight gain (WMD = 0.087 kg/d), feed efficiency (WMD = 0.004 kg/kg), hot carcass weight (WMD = 5.45 kg), and Longissimus dorsi muscle area (WMD = 3.48 cm2). Lower (p < 0.05) ruminal concentration of ammonia nitrogen (WMD = −1.18 mg/dL), acetate (WMD = −4.37 mol/100 mol) and total protozoa (WMD = −2.17 × 105/mL), and higher concentration of propionate (WMD = 0.878 mol/100 mol, p < 0.001) were observed in response to EOs supplementation. Serum urea concentration (WMD = −1.35 mg/dL, p = 0.026) and haptoglobin (WMD = −39.67 μg/mL, p = 0.031) were lower in cattle supplemented with EOs. In meat, EOs supplementation reduced (p < 0.001) cooking loss (WMD = −61.765 g/kg), shear force (WMD = −0.211 kgf/cm2), and malondialdehyde content (WMD = −0.040 mg/kg), but did not affect pH, color (L* a* and b*), or chemical composition (p > 0.05). Simulation analysis showed that EOs increased economic income by 1.44% and reduced the environmental footprint by 0.83%. In conclusion, dietary supplementation of EOs improves productive performance and rumen fermentation, while increasing the economic profitability and reducing the environmental impact of beef cattle. In addition, supplementation with EOs improves beef tenderness and oxidative stability.
Collapse
|
5
|
Álvarez-Rodríguez J, Urrutia O, Lobón S, Ripoll G, Bertolín JR, Joy M. Insights into the role of major bioactive dietary nutrients in lamb meat quality: a review. J Anim Sci Biotechnol 2022; 13:20. [PMID: 35125115 PMCID: PMC8819927 DOI: 10.1186/s40104-021-00665-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Feed supplementation with α-linolenic acid (ALA) and linoleic acid (LA) increases their content in muscle, ALA increases n-3 polyunsaturated fatty acids and decrease n-6/n-3 ratio in muscle, and LA increases rumenic acid. However, high LA supplementation may have negative effects on lambs’ lipid oxidative stability of meat. When the sources of ALA and LA are fed as fresh forage, the negative effects are counterbalanced by the presence of other bioactive compounds, as vitamin E (mainly α-tocopherol) and polyphenols, which delay the lipid oxidation in meat. There is a wide consensus on the capability of vitamin E delaying lipid oxidation on lamb meat, and its feed content should be adjusted to the length of supplementation. A high dietary inclusion of proanthocyanidins, phenolic compounds and terpenes reduce the lipid oxidation in muscle and may improve the shelf life of meat, probably as a result of a combined effect with dietary vitamin E. However, the recommended dietary inclusion levels depend on the polyphenol type and concentration and antioxidant capacity of the feedstuffs, which cannot be compared easily because no routine analytical grading methods are yet available. Unless phenolic compounds content in dietary ingredients/supplements for lambs are reported, no specific association with animal physiology responses may be established.
Collapse
|
6
|
Hashemzadeh F, Rafeie F, Hadipour A, Rezadoust MH. Supplementing a phytogenic-rich herbal mixture to heat-stressed lambs: Growth performance, carcass yield, and muscle and liver antioxidant status. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Arteaga-Wences Y, Estrada-Angulo A, Ríos-Rincón FG, Castro-Pérez B, Mendoza-Cortéz D, Manriquez-Núñez O, Barreras A, Corona-Gochi L, Zinn R, Perea-Domínguez X, Plascencia A. The effects of feeding a standardized mixture of essential oils vs monensin on growth performance, dietary energy and carcass characteristics of lambs fed a high-energy finishing diet. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Mirzaei-Alamouti H, Namdarpour H, Abdollahi A, Amanlou H, Patra AK, Shahir MH, Aliyari D, Vazirigohar M. Nutrient digestibility, blood metabolites, and production performance of peripartal ewes fed dietary plant extract and monensin. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Lemos BJM, Souza FM, Arnhold E, Conceição EC, Couto VRM, Fernandes JJR. Effects of plant extracts from Stryphnodendron adstringens (mart.) coville, Lafoensia pacari a. st.-hil, copaifera spp., and Pterodon emarginatus Vogel on in vitro rumen fermentation. J Anim Physiol Anim Nutr (Berl) 2021; 105:639-652. [PMID: 33559351 DOI: 10.1111/jpn.13502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/28/2022]
Abstract
The effects of doses CTL (0 mg), 30, 300 and 3000 mg/L of extracts from Stryphnodendron adstringens (Mart.) Coville (SA), Lafoensia pacari A. St.-Hil (LP), Copaifera spp. (CO) and Pterodon emarginatus Vogel (PE) on ruminal fermentation were investigated in eight experiments conducted in randomized complete block designs. The in vitro system contained four fermentation vessels. Each treatment was allocated in one vessel in each run. Incubation was run four and five times with diets 50:50 and 10:90 (roughage to concentrate ratio) respectively. Incubation vessel was the experimental unit, and each incubation run was a block. All plant extracts negatively affected DM degradation at 3000 mg/L. In diet 50:50, SA-3000 increased the molar proportion of propionate (p < 0.05), yet it decreased the concentration of fermentation products (p < 0.05); LP-300 reduced ruminal ammonia nitrogen (NH3 -N; 98 vs. 120 mg/dl for LP-300 and average of CTL and LP-30, respectively) and isobutyrate (p < 0.05); CO-300 reduced (p < 0.05) NH3 -N (98 vs. 123 mg/dl for CO-300 and average of CTL and CO-30, respectively); and P. emarginatus had no positive effects on rumen fermentation (p > 0.05). In diet 10:90, SA-300 reduced (p < 0.001) NH3 -N and total volatile fatty acids (VFA); LP-30 increased (p < 0.05) total VFA (85 vs. 63 mM for LP-30 and CTL, respectively), molar proportions of acetate and propionate, and had lower C2 :C3 than CTL (3.6 vs. 4.3, respectively); CO-300 decreased acetate and increased propionate, reducing C2 :C3 (p < 0.001; 2.8 vs. 3.6 for CO-300 and average of other doses, respectively); PE-30 and PE-300 reduced NH3 -N by 14% and increased total VFA by 29% compared with CTL (p < 0.05). Further in vivo investigations may consider L. pacari (LP-30), Copaifera spp. (CO-300) oleoresin and P. emarginatus oleoresin (PE-30 and PE-300) in diets with high inclusion of concentrate.
Collapse
Affiliation(s)
- Barbara J M Lemos
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Flavia M Souza
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Emmanuel Arnhold
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Victor R M Couto
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
10
|
Garcia-Galicia IA, Arras-Acosta JA, Huerta-Jimenez M, Rentería-Monterrubio AL, Loya-Olguin JL, Carrillo-Lopez LM, Tirado-Gallegos JM, Alarcon-Rojo AD. Natural Oregano Essential Oil May Replace Antibiotics in Lamb Diets: Effects on Meat Quality. Antibiotics (Basel) 2020; 9:E248. [PMID: 32408670 PMCID: PMC7277732 DOI: 10.3390/antibiotics9050248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022] Open
Abstract
A study was conducted to investigate the effect of oregano essential oil (OEO) and monensin sodium on the oxidative stability, colour, texture, and the fatty acid profile of lamb meat (m. Longissimus lumborum). Twenty Dorper x Pelibuey lambs were randomly divided into five treatments; control (CON), monensin sodium (SM, Rumensin 200® 33 mg/kg), a low level of OEO (LO, 0.2 g/kg dry matter (DM)), a medium level of OEO (MO, 0.3g/ kg DM), and a high level of OEO (HO, 0.4 g/kg DM). Dietary supplementation of OEO at any concentration lowered the compression strength in comparison with CON and SM. MO had the highest a* values (7.99) and fatty acid concentration (C16:1n7, C18:1n9c, C18:1n6c, C20:1n9, and C18:2n6c) during storage for 7 d at 3 °C. Lipid oxidation was not promoted (p > 0.05) by the moderated supplementation of oregano essential oil; however, OEO at 0.3 g/kg DM showed a slight lipid pro-oxidant effect. Dietary supplementation of MO and SM had the same effect on colour, tenderness, and the fatty acid profile of lamb (L. lumborum). It was demonstrated that oregano essential oil was beneficial for lambs feeding, and it could be a natural alternative to replace monensin in lamb diets with improvements in the quality of the meat.
Collapse
Affiliation(s)
- Ivan A. Garcia-Galicia
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico; (I.A.G.-G.); (J.A.A.-A.); (A.L.R.-M.); (J.M.T.-G.)
| | - Jose A. Arras-Acosta
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico; (I.A.G.-G.); (J.A.A.-A.); (A.L.R.-M.); (J.M.T.-G.)
| | - Mariana Huerta-Jimenez
- Catedrático CONACYT-UACH, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico; (M.H.-J.); (L.M.C.-L.)
| | - Ana L. Rentería-Monterrubio
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico; (I.A.G.-G.); (J.A.A.-A.); (A.L.R.-M.); (J.M.T.-G.)
| | - Jose L. Loya-Olguin
- Posgrado en Ciencias Biológico Agropecuarias/Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Compostela 63700, Mexico;
| | - Luis M. Carrillo-Lopez
- Catedrático CONACYT-UACH, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico; (M.H.-J.); (L.M.C.-L.)
| | - Juan M. Tirado-Gallegos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico; (I.A.G.-G.); (J.A.A.-A.); (A.L.R.-M.); (J.M.T.-G.)
| | - Alma D. Alarcon-Rojo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico; (I.A.G.-G.); (J.A.A.-A.); (A.L.R.-M.); (J.M.T.-G.)
| |
Collapse
|
11
|
Teobaldo RW, De Paula NF, Zervoudakis JT, Fonseca MA, Cabral LS, Martello HF, Rocha JKL, Ribeiro IJ, Mundim AT. Inclusion of a blend of copaiba, cashew nut shell and castor oil in the protein-energy supplement for grazing beef cattle improves rumen fermentation, nutrient intake and fibre digestibility. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Essential oils are secondary plant compounds extracted from plants, with potential for the modulation of rumen fermentation.
Aims
Two experiments, namely one in vivo and another in vitro, were conducted to analyse the effects of a commercial blend of essential oils (EO; copaiba (Copaifera langsdorffii), cashew nut shell (Anacardium occidentale) and castor oil (Ricinus communis) and monensin as dietary feed additives in protein–energy supplements (PES) provided to grazing beef cattle, on ruminal fermentation, intake, total nutrient digestibility and protein dietary efficiency.
Methods
In the in vivo experiment, four entire Nellore bulls cannulated in the rumen (374 ± 15.66 kg; mean ± s.d.) were used in a 4 × 4 Latin-square design to evaluate the effects of EO concentration and monensin on voluntary intake, digestibility, and rumen and metabolic characteristics of grazing beef cattle provided with supplementation during the rainy season. Treatments were as follows: control (CON; PES without additives); monensin (MON; PES with inclusion of monensin at 20 mg/kg DM consumed); EO150 (PES with inclusion of EO at 150 mg/kg DM consumed); EO300 (PES with inclusion of EO at 300 mg/kg DM consumed). In the in vitro experiment, the effects EO150, EO300 and EO450, MON and CON on DM and neutral detergent-fibre (NDF) digestibility, and total gas production, were evaluated in four consecutive runs using a gas-production (GP) system.
Key results
In the in vivo experiment, DM intake, forage DM intake, crude protein intake and NDF intake were similar (P > 0.05) between EO150 and MON, but both were greater than those in EO300 and CON (P < 0.05). A lower EO concentration (EO150) increased (P < 0.05) NDF digestibility and improved nitrogen utilisation efficiency. In the in vitro experiment, the addition of MON and EO150 did not modify (P > 0.05) GP, DM and NDF digestibility compared with the control, but EO300 and EO450 decreased GP at 12 and 24 h and decreased DM and NDF digestibility at 48 h compared with the control, MON and EO150.
Conclusions
In vivo and in vitro results suggested that EO (copaiba oil, cashew nut shell and castor) at low doses (150 mg/kg DM) has the potential to improve ruminal fermentation in grazing beef cattle receiving supplements, but medium and high doses of EO can have adverse effects.
Implications
EO blends could be an alternative to MON for grazing beef cattle with access to supplements.
Collapse
|
12
|
Patra AK, Geiger S, Schrapers KT, Braun HS, Gehlen H, Starke A, Pieper R, Cieslak A, Szumacher-Strabel M, Aschenbach JR. Effects of dietary menthol-rich bioactive lipid compounds on zootechnical traits, blood variables and gastrointestinal function in growing sheep. J Anim Sci Biotechnol 2019; 10:86. [PMID: 31827785 PMCID: PMC6886202 DOI: 10.1186/s40104-019-0398-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background The present study aimed at investigating the influence of 90% menthol-containing plant bioactive lipid compounds (PBLC, essential oils) on growth performance, blood haematological and biochemical profile, and nutrient absorption in sheep. Twenty-four growing Suffolk sheep were allotted into three dietary treatments: Control (without PBLC), lower dose of PBLC (PBLC-L; 80 mg/d) and higher dose of PBLC (PBLC-H; 160 mg/d). Sheep in all groups were fed meadow hay ad libitum plus 600 g/d of concentrate pellets for 28 d. Results Average daily gain was not affected by treatment. Feeding of PBLC increased hay and total feed intake per kg body weight (P < 0.05). Counts of total leucocytes, lymphocytes and monocytes were not different among treatments. However, neutrophil count decreased (P < 0.05) in PBLC-H with a similar trend in PBLC-L (P < 0.10). Concentrations of glucose, bilirubin, triglycerides, cholesterol, urea and magnesium in serum were not different among sheep fed different doses of PBLC. However, serum calcium concentration tended to increase in PBLC-H (P < 0.10) and serum concentrations of aspartate & asparagine (P < 0.01) and glutamate & glutamine (P < 0.05) increased linearly with increasing PBLC dose. In ruminal epithelia isolated from the rumen after killing, baseline conductance (G t; P < 0.05) and short-circuit current (I sc; P < 0.01) increased in both PBLC groups. Ruminal uptakes of glucose and methionine in the presence of Na+ were not affected by the dietary PBLC supplementation. In the absence of Na+, however, glucose and methionine uptakes increased (P < 0.05) in PBLC-H. In the jejunum, I sc tended to increase in PBLC-H (P < 0.10), but baseline G t was not affected. Intestinal uptakes of glucose and methionine were not influenced by PBLC in the presence or absence of Na+. Conclusion The results suggest that menthol-rich PBLC increase feed intake, and passive ion and nutrient transport, the latter specifically in the rumen. They also increased serum concentrations of urea precursor amino acids and tended to increase serum calcium concentrations. Future studies will have to show whether some of these findings might be commonly linked to a stimulation of transient receptor potential (TRP) channels in the gastrointestinal tract.
Collapse
Affiliation(s)
- Amlan K Patra
- 1Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany.,2Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Kolkata, 700037 India
| | - Sebastian Geiger
- 1Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | | | | | - Heidrun Gehlen
- 4Equine Clinic: Surgery and Radiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Alexander Starke
- 5Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - Robert Pieper
- 6Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Strasse 49, 14195 Berlin, Germany
| | - Adam Cieslak
- 7Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | | | - Jörg R Aschenbach
- 1Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
13
|
Patra AK, Geiger S, Braun HS, Aschenbach JR. Dietary supplementation of menthol-rich bioactive lipid compounds alters circadian eating behaviour of sheep. BMC Vet Res 2019; 15:352. [PMID: 31638982 PMCID: PMC6805686 DOI: 10.1186/s12917-019-2109-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background Plant bioactive lipid compounds (PBLC), commonly known as essential oils, are increasingly evaluated as feed additives in ruminants due to beneficial effects on animal performance and health; however, there is no study evaluating circadian eating behaviour in ruminants. Altered eating behaviour may be implicated in changes of feed intake in ruminants. Therefore, the present study investigated the influence of menthol-rich PBLC on circadian eating behaviour in 24 growing sheep that were equally divided into three treatments, control (without PBLC), a lower dose (80 mg/d) or a higher dose (160 mg/d) of PBLC. Daily doses of PBLC were supplied with 600 g/d of concentrates fed in three equal portions at 07:00, 11:00 and 15:00 h for 4 weeks, whereas, meadow hay was fed ad libitum. Results The eating behaviour recorded by an automatic transponder-operated feeding system revealed that daily eating time and feeder visits increased with increasing doses of PBLC. The circadian distribution of eating time and feeder visits (with 1-h resolution) was influenced by the treatment. Eating time during concentrate-offering hours and between concentrate-offering hours increased or tended to increase linearly with greater concentrations of PBLC. Feeder visits did not change significantly during concentrate-offering hours, but were greater in the PBLC groups compared with the control between concentrate-feeding hours. Average length of the longest meals (5th percentile) decreased due to PBLC feeding. Daily feed intake was greater in the PBLC groups than the control. Conclusions Menthol-rich PBLC in the applied dose range stimulate circadian eating behaviour, which cannot only be attributed to their presence during concentrate feeding hours, but persist during post-concentrate feeding hours.
Collapse
Affiliation(s)
- Amlan K Patra
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg19b, Berlin, Germany.,Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Kolkata, India
| | - Sebastian Geiger
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg19b, Berlin, Germany
| | | | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg19b, Berlin, Germany.
| |
Collapse
|
14
|
de Oliveira Moreira AC, de Lira Machado AH, de Almeida FV, Braga JWB. Rapid Purity Determination of Copaiba Oils by a Portable NIR Spectrometer and PLSR. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1079-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|