1
|
Xia WG, Abouelezz K, Huang XB, Li KC, Chen W, Wang S, Zhang YN, Jin CL, Azzam MMM, Zheng CT. Dietary non-phytate phosphorus requirements for optimal productive and reproductive performance, and egg and tibial quality in egg-type duck breeders. Animal 2023; 17:101022. [PMID: 37976778 DOI: 10.1016/j.animal.2023.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
Optimal dietary non-phytate phosphorus (NPP) is essential in poultry to maximise productive and reproductive performance, along with indices of egg and bone quality. This study aimed to establish the NPP requirements of egg-type duck breeders aged from 54 to 80 weeks on the following traits: egg production, egg incubation, egg quality, tibial characteristics, reproductive organ, plasma indices, and the expression of genes related to phosphorus absorption. Longyan duck breeders aged 54 weeks (n = 300) were randomly allotted to five treatments, each containing six replicates of 10 individually caged birds. Birds were fed corn-soybean meal-based diets containing 0.18, 0.25, 0.32, 0.38, and 0.45% NPP/kg for 27 weeks. The tested dietary NPP levels did not affect egg production or egg quality indices. The hatchling weight of ducklings increased (quadratic, P < 0.01) as dietary NPP level increased, and the highest value occurred with 0.25% NPP. The number of large yellow follicles (LYF), and the relative weights of LYF and ovary showed linear and quadratic responses to dietary NPP levels; the lowest number and relative weight of LYF occurred with 0.38% NPP, and the lowest ovarian weight was obtained with 0.25% NPP. There were no differences in tibial length, breaking strength, and mineral density in response to dietary NPP levels. In contrast, tibial content of Ca increased (linear, P < 0.01) with dietary NPP levels increasing from 0.18 to 0.45%, and the tibial content of P increased at 0.32% NPP and the higher dietary NPP levels. Plasma concentration of P showed a quadratic (P < 0.05) response to the dietary NPP levels, where the highest value was seen at 0.38% NPP. In conclusion, dietary NPP levels from 0.18 to 0.45% had no effects on egg production, and egg and tibial quality of duck breeders. The duck breeders fed a diet with 0.25% NPP showed the highest hatchling weight of their offspring, while those fed 0.38% NPP had the lowest number and relative weight of LYF. These results indicated that the diet with 0.25% NPP can be used in egg-type duck breeders to improve the hatchling weight of their offspring, without adverse effects on their productivity. The regression model indicated that the maximal hatchling weight of ducklings was obtained from duck breeders fed the diet with 0.30% NPP.
Collapse
Affiliation(s)
- W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - K Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - C L Jin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - M M M Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
2
|
Influence of dietary phosphorus concentrations on the performance of rearing pigeons (Columba livia), and bone properties of squabs. Poult Sci 2022; 101:101744. [PMID: 35220034 PMCID: PMC8881650 DOI: 10.1016/j.psj.2022.101744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to investigate the effects of dietary P levels on the performance of rearing pigeons, and bone characteristics of squabs from 7 to 21 d of age. A total of 192 pairs of adult Silver King pigeons (40 wk of age) were used. The pigeons were randomly allocated to one of 4 treatment groups, each consisting of eight replicates of 6 pigeon pairs per replicate. Dietary treatments included the basal diet (containing 0.3% of P), the basal diet supplemented with 0.2, 0.4, or 0.8% inorganic P. And the dietary Ca content was kept at 1.40% across all treatments. The experimental diets were fed to parent pigeons as corn-soybean complete pellet feed, and squabs fed with crop milk secreted by parent pigeons. Pigeons in the group of 0.4% supplemental non-phytate phosphorus (NPP) had shorter (P = 0.045) oviposition interval than those in the control group and group of 0.8% NPP. When the diet was supplemented with 0.8% of NPP, the least average egg weight was observed (P = 0.006). Female breeding birds had much higher (P < 0.01) Ca, P, and ALP in serum than male ones. At 7-d of age, dietary P supplementation influenced P and Ca content in tibia ash of squabs (P < 0.05). The tibia ash Ca content in the group of 0.2% NPP was the highest among the treatments (P = 0.007). At d 21 of age, both the birds in the group of 0.4 and 0.8% NPP had higher tibia breaking strength (P < 0.01) and tibia ash contents (P < 0.001) compared to the ones in the control group. In conclusion, the P deficiency in the diet of parent pigeons could cause poor bone mineralization of squabs, especially impaired the bone-breaking strength and bone ash content. The 0.8% of NPP supplementation in the diet has a positive influence on mineralization of squabs although production depression was observed. Both P and Ca metabolism of female breeding birds were more active than male ones at earlier time points of rearing period. The desirable supplemental NPP level in diet for breeding pigeon was 0.4% according to the performance data in the present trial. The recommended Ca: P ratio for pigeons, which was different from the optimum value for broilers, needs to be studied in the future.
Collapse
|
3
|
Alagawany M, Ashour EA, El-Kholy MS, Mohamed LA, Abd El-Hack ME. Effect of dietary calcium and phosphorus levels on growth, carcass characteristics and liver and kidney functions of growing Egyptian geese. Poult Sci 2021; 100:101244. [PMID: 34217905 PMCID: PMC8256282 DOI: 10.1016/j.psj.2021.101244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/06/2021] [Accepted: 05/02/2021] [Indexed: 11/27/2022] Open
Abstract
The present study investigated the effect of different dietary levels of calcium (Ca) and non-phytate phosphorus (P) on the growth performance, carcass characteristics, and blood components of growing geese. A total of 120, 4-wk-old Egyptian goslings with similar body weights were randomly distributed to four groups in a 2 × 2 factorial arrangement, which included 2 levels of Ca (0.85% and 0.70%) and 2 levels of non-phytate P (0.45% and 0.35%). Each group was subdivided into 6 replicates of five birds. The experiment lasted 8 wk, from 4 to 12 wk of age. Results show that dietary Ca level had no significant effect on any of the studied growth performance traits over the full experimental period. Dietary P level also had no significant impact on these traits, with the exception of daily body weight gain and feed conversion ratio at 8 to 12 wk of age; these improved significantly with the low P diet. Geese received a diet containing 0.70% Ca + 0.45% P had the lowest body weight values at 12 wk of age and the lowest daily body weight gain, and feed intake at 8 to 12 weeks of age. While, the lowest value of feed conversion ratio was recorded in geese fed low level of Ca with low level of P (0.70% Ca + 0.35% P). There were no significant effects of the different dietary levels of Ca, P, or their interaction on all studied carcass parameters. Low dietary Ca level significantly increased the plasma levels of total protein, albumin, alanine transaminase (ALT), aspartate transaminase (AST), and creatinine and significantly decreased the plasma levels of Ca and P. Different dietary P levels had no significant effect on plasma levels of albumin, AST, ALT, ALP, and urea, whereas the 0.35% P-based diet significantly decreased the plasma contents of total protein, creatinine, Ca, and P. Plasma levels of albumin, creatinine, urea, Ca, and P were not affected by an interaction between Ca and P. Diets containing 0.70% Ca and 0.45% P lead to the highest plasma values for total protein, ALT, AST, and ALP compared with the other dietary Ca and P combinations. In conclusion, dietary Ca and P levels can be simultaneously reduced without negative impacts on growth performance, carcass characteristics, or blood biochemical components. We advise to avoid increasing the dietary Ca: P ratio, as it leads to negative effects on growth performance and blood biochemistry in growing geese. So, the findings of the current study recommended the low levels of Ca (0.70%) and non-phytate P (0.35%) for the performance of Egyptian geese during the fattening period.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Elwy Ali Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Laila Ali Mohamed
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | |
Collapse
|