1
|
Morita Y, Yachida M, Tokimitsu K, Itoh M. Analysis of gut microbiota with cryptosporidiosis based on fecal condition in neonatal dairy calves on a farm in Japan. JDS COMMUNICATIONS 2024; 5:649-653. [PMID: 39650005 PMCID: PMC11624411 DOI: 10.3168/jdsc.2023-0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/30/2024] [Indexed: 12/11/2024]
Abstract
Cryptosporidiosis is a major cause of diarrhea and is associated with high morbidity in calves. Changes in the gut microbiota exacerbate diarrhea caused by Cryptosporidium parvum infection in neonatal and weaned calves. However, information on the gut microbiota of neonatal calves with C. parvum infection is scarce, and research into the microbiome of calves is essential for developing preventive and therapeutic interventions. This study aimed to elucidate the gut microbiota of neonatal calves with cryptosporidiosis. We collected 31 fecal samples from 31 neonatal calves on a dairy farm with or without C. parvum antigen [CP(+) or CP(-)] using a kit and analyzed the differences in the microbiota between diarrheal (D) and normal (N) fecal samples with C. parvum infection based on the fecal score. The analyses revealed the α diversity indexes of fecal microbiota in CP(+)-N samples were higher than that in CP(+)-D samples. Megasphaera spp. and other rumen microbes were identified, and significantly associated with CP(+)-N samples compared with CP(+)-D samples by linear discriminant analysis effect size (LEfSe). We conclude that the specific gut microbiota could characterize fecal microbiota in calves with neonatal cryptosporidiosis without clinical symptoms.
Collapse
Affiliation(s)
| | | | - Keita Tokimitsu
- Division of Clinical Veterinary Medicine, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555 Japan
| | - Megumi Itoh
- Division of Clinical Veterinary Medicine, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555 Japan
| |
Collapse
|
2
|
Cabral LDS, Weimer PJ. Megasphaera elsdenii: Its Role in Ruminant Nutrition and Its Potential Industrial Application for Organic Acid Biosynthesis. Microorganisms 2024; 12:219. [PMID: 38276203 PMCID: PMC10819428 DOI: 10.3390/microorganisms12010219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The Gram-negative, strictly anaerobic bacterium Megasphaera elsdenii was first isolated from the rumen in 1953 and is common in the mammalian gastrointestinal tract. Its ability to use either lactate or glucose as its major energy sources for growth has been well documented, although it can also ferment amino acids into ammonia and branched-chain fatty acids, which are growth factors for other bacteria. The ruminal abundance of M. elsdenii usually increases in animals fed grain-based diets due to its ability to use lactate (the product of rapid ruminal sugar fermentation), especially at a low ruminal pH (<5.5). M. elsdenii has been proposed as a potential dietary probiotic to prevent ruminal acidosis in feedlot cattle and high-producing dairy cows. However, this bacterium has also been associated with milk fat depression (MFD) in dairy cows, although proving a causative role has remained elusive. This review summarizes the unique physiology of this intriguing bacterium and its functional role in the ruminal community as well as its role in the health and productivity of the host animal. In addition to its effects in the rumen, the ability of M. elsdenii to produce C2-C7 carboxylic acids-potential precursors for industrial fuel and chemical production-is examined.
Collapse
Affiliation(s)
- Luciano da Silva Cabral
- Department of Animal Science and Rural Extension, Agronomy and Animal Science School, Federal University of Mato Grosso, Cuiabá 780600-900, Mato Grosso, Brazil;
| | - Paul J. Weimer
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
3
|
Khorasani O, Chaji M, Baghban F. Comparison of the effect of Saccharomyces cerevisiae-Megasphaera elsdenii and buffer on growth performance, digestibility, ruminal histomorphometry, and carcass characteristics of fattening lambs in high concentrate diet. Trop Anim Health Prod 2023; 55:135. [PMID: 36977895 DOI: 10.1007/s11250-023-03532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
This study aimed to investigate the effect of rumen pH-adjusting additives in the high-concentrated diet on functional traits, nutrient digestion, some meat parameters, and histomorphometry, and rumen histopathology. Twenty-four Arabia male lambs with 3 to 4 months old and initial body weight of 23.9 ± 3.15 kg were used in a completely randomized design with three treatments and eight replicates. The study was 77 days, including 14 days of the adaptation period and 63 days of the record taking and sampling period. The experimental treatments consisted of a control diet, control diet + sodium bicarbonate buffer, control diet + Megasphaera elsdenii, and Saccharomyces cerevisiae (bacterial-yeast). Rumen fluid was taken by stomach tube at 3 h after morning feeding to measure pH. The lambs were weighed every 3 weeks during the period, and the body weight changes, average daily gain, and total weight gain were measured, and the feed conversion ratio was calculated. At the end of the experiment, the lambs were slaughtered, and the longissimus dorsi muscle was prepared to determine the meat parameters. For histological studies, the abdominal rumen sac was sampled. There were no differences among treatments in dry matter intake (DMI), daily weight gain (ADG), and feed conversion ratio (P > 0.05). Propionate concentration was higher in the bacteria-yeast treatment than other treatments (P < 0.05). Protein digestibility was higher in control and bacteria-yeast treatments than buffer treatment (P < 0.05). The percentage of meat protein, carcass weight, and dressing percentage in bacterial-yeast treatment was higher than other treatments (P < 0.05). Rumen wall thickness in the buffer and bacterial-yeast receiving treatments was greater than the control treatment and was significant in the buffer treatment compared to the control treatment (P < 0.05). The thickness of rumen epithelial tissue in the buffer and bacterial-yeast recipient treatments was less than the control treatment (P < 0.05). Rumen papillae thickness was higher in the control treatment than other treatments (P < 0.05). Hydropic degeneration and parakeratosis were less in pH-regulating treatments than in control. The results showed that the use of Megasphaera elsdenii could be an effective way to modulate the ruminal fermentation conditions of lambs fed with high concentrate diets. In addition, to increaseing dressing percentage and meat protein, it can also reduce tissue damage and improve ruminal tissue structure.
Collapse
Affiliation(s)
- Omid Khorasani
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box 63517-73637, Mollasani, Ahvaz, Iran
| | - Morteza Chaji
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box 63517-73637, Mollasani, Ahvaz, Iran.
| | - Farshad Baghban
- Department of Veterinary Medicine, Azad University of Yasuj, Yasuj, Iran
| |
Collapse
|
4
|
Koike S, Ueno M, Ashida N, Imabayashi T, Kobayashi Y. Effect of Bacillus subtilis C-3102 supplementation in milk replacer on growth and rumen microbiota in preweaned calves. Anim Sci J 2021; 92:e13580. [PMID: 34312943 DOI: 10.1111/asj.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022]
Abstract
We aimed to assess the effect of feeding Bacillus subtilis C-3102 on the growth and rumen microbiota in the preweaned calves. Twelve newborn Japanese Black calves were randomly allocated to either the control (n = 6) or the treatment (n = 6) groups in the present study. Calves in the treatment group were offered B. subtilis C-3102 supplemented milk replacer throughout the preweaning period. Rumen fermentation during the first 21 days of life seemed to be slightly suppressed by feeding B. subtilis C-3102. This fermentation shift was probably attributed to the lower abundance of the core members of rumen microbiota until 21 days of age in the calves fed B. subtilis C-3102. However, feeding B. subtilis C-3102 did not influence the abundance of the core members of rumen microbiota at 90 days of age. Distribution of Sharpea spp. and Megasphaera spp., which potentially contribute to low methane production and are regarded as beneficial rumen bacteria, was higher in the rumen of calves fed B. subtilis C-3102 at 90 days of age. These results suggest that B. subtilis C-3102 supplementation in milk replacer could potentially contribute to the improvement of feed efficiency after weaning via the establishment of beneficial rumen bacteria.
Collapse
Affiliation(s)
- Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Machiho Ueno
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Barreto MO, Soust M, Moore RJ, Olchowy TWJ, Alawneh JI. Systematic review and meta-analysis of probiotic use on inflammatory biomarkers and disease prevention in cattle. Prev Vet Med 2021; 194:105433. [PMID: 34298303 DOI: 10.1016/j.prevetmed.2021.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to appraise the available evidence on the effectiveness of probiotic treatment on mature cattle immunity, inflammation, and disease prevention. A systematic review with meta-analysis was conducted to analyse studies that were eligible to answer the following research question: "in cattle of at least 6-months of age, is the use of probiotics associated with immunomodulatory and inflammatory responses, and clinical disease outcomes?" Our literature search yielded 25 studies that fit the inclusion criteria. From these studies, only 19 were suitable for inclusion in the meta-analysis due to data limitations and differences in study population characteristics. Included studies were assessed for bias using a risk assessment tool adapted from the Cochrane Collaboration's tool for assessing risk of bias in randomised trials. GRADE guidelines were used to assess the quality of the body of evidence at the outcome level. The meta-analysis was performed using Review Manager and R. The overall quality of evidence at the outcome level was assessed as being very low. On average, the treatment effect on immunoglobulin G (IgG), serum amyloid A (SAA), haptoglobin (Hp) and β-hydroxybutyrate (BoHB) for cows receiving probiotics did not differ from control cows. Exposure to probiotics was not associated with reduced risk of reproductive disorders (pooled RR = 1.02 95 % CI = 0.81-1.27, P = 0.88). There is insufficient evidence to support any significant positive effects of probiotics on cattle immunity and disease prevention. This lack of consistent evidence could be due to dissimilarities in the design of the included studies such as differences in dosage, dose schedule, diet composition and/or physiological state of the host at the time of treatment.
Collapse
Affiliation(s)
- Michelle O Barreto
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, Queensland, 4573, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Timothy W J Olchowy
- The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia; Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T3R 1J3, Canada
| | - John I Alawneh
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia; Murdoch University, School of Veterinary Medicine, Perth, Western Australia, 6150, Australia.
| |
Collapse
|
6
|
Pulse processing affects gas production by gut bacteria during in vitro fecal fermentation. Food Res Int 2021; 147:110453. [PMID: 34399455 DOI: 10.1016/j.foodres.2021.110453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Flatulence is one barrier to pulse consumption for many people. Therefore, we examined how processing affects gas production by the microbiome in three classes of pulses. Processing did not affect gas production from Navy beans. However, in Pardina lentils and green peas, (-1.9 ± 0.3 mL/24 h, p < 0.001; -2.3 ± 0.3 mL/24 h, p < 0.001, respectively). In Pardina lentils and green peas, germination diminished carbohydrate utilization by the microbiome compared with unprocessed samples. In Pardina lentils germination reduced abundance germination resulted in the greatest reduction in gas production among six processing methods of amplicon sequence variants (ASVs) from Bacteroides and Lachnospiraceae and reduced propionate production compared with unprocessed samples. In green peas, germination reduced ASVs from Lachnospiraceae, including one from Roseburia, and reduced proportion of butyrate production during fermentation. Three ASVs from Clostridium sensu stricto (cluster 1), Megasphaera elsdenii, and unclassified Veillonellaceae, were strongly associated with increased gas production across all samples (ρ = 0.67-0.69, p < 0.001). This study showed that processing can reduce gas production by the microbiome in some pulses, but also reduces saccharolytic fermentation and production of beneficial microbial metabolites.
Collapse
|
7
|
Carey MA, Medlock GL, Alam M, Kabir M, Uddin MJ, Nayak U, Papin J, Faruque ASG, Haque R, Petri WA, Gilchrist CA. Megasphaera in the stool microbiota is negatively associated with diarrheal cryptosporidiosis. Clin Infect Dis 2021; 73:e1242-e1251. [PMID: 33684930 PMCID: PMC8442784 DOI: 10.1093/cid/ciab207] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The protozoan parasites in the Cryptosporidium genus cause both acute diarrheal disease and subclinical (i.e. non-diarrheal) disease. It is unclear if the microbiota can influence the manifestation of diarrhea during a Cryptosporidium infection. METHODS To characterize the role of the gut microbiota in diarrheal cryptosporidiosis, the microbiome composition of both diarrheal and surveillance Cryptosporidium-positive fecal samples from 72 infants was evaluated using 16S rRNA gene sequencing. Additionally, the microbiome composition prior to infection was examined to test whether a preexisting microbiome profile could influence the Cryptosporidium infection phenotype. RESULTS Fecal microbiome composition was associated with diarrheal symptoms at two timepoints. Megasphaera was significantly less abundant in diarrheal samples when compared to subclinical samples at the time of Cryptosporidium detection (log2(fold change) = -4.3, p=10 -10) and prior to infection (log2(fold change) = -2.0, p=10 -4); this assigned sequence variant was detected in 8 children who had diarrhea and 30 children without diarrhea. Random forest classification also identified Megasphaera abundance in the pre- and post-exposure microbiota as predictive of a subclinical infection. CONCLUSIONS Microbiome composition broadly, and specifically low Megasphaera abundance, was associated with diarrheal symptoms prior to and at the time of Cryptosporidium detection. This observation suggests that the gut microenvironment may play a role in determining the severity of a Cryptosporidium infection.
Collapse
Affiliation(s)
- Maureen A Carey
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, USA
| | - Gregory L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA.,Current affiliation: Department of Pediatrics, University of Virginia, Charlottesville, USA
| | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mamun Kabir
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, USA
| | - Uma Nayak
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Jason Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - A S G Faruque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, USA
| | - Carol A Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, USA
| |
Collapse
|