1
|
Effects of Macleaya Cordata Extract on Performance, Nutrient Apparent Digestibilities, Milk Composition, and Plasma Metabolites of Dairy Goats. Animals (Basel) 2023; 13:ani13040566. [PMID: 36830352 PMCID: PMC9951673 DOI: 10.3390/ani13040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
In this study, we aimed to investigate the effects of Macleaya cordata extract (MCE) supplementation on performance, nutrient apparent digestibilities, plasma metabolites, and milk quality in dairy goats. Twenty-four lactating Guanzhong dairy goats (n = 24) were randomly divided into two groups (each containing 12 goats) in a 52-day trial: the CON group was fed a basal diet; the MCE group was fed a basal diet supplemented with 400 mg/kg MCE. The results indicated that the 4% fat corrected milk yield (4% FCM); uncorrected milk yield; milk-fat concentration; content of C4:0, C18:0, and C18:1n9c fatty acids in milk; and apparent digestibility of neutral detergent fiber (NDF) and acid detergent fiber (ADF) in the MCE group were significantly higher (p < 0.05). Furthermore, the lactoferrin (LTF), alpha-lactalbumin (α-La), and beta-lactoglobulin (β-Lg) of the milk and feed conversion rate (FCR) of the goats were significantly greater (p < 0.01) in the MCE group than in the CON group. In contrast, the somatic cell count (SCC) (p < 0.01), content of C14:0 fatty acids (p < 0.01) of milk, and blood urea nitrogen (BUN) concentrations (p < 0.05) were significantly lower in the in the MCE goats. These results show that the feeding of MCE can increase the performance and apparent nutrient digestibility of fiber in dairy goats, improving the quality of goat milk.
Collapse
|
2
|
Determination of Free Amino Acids in Milk, Colostrum and Plasma of Swine via Liquid Chromatography with Fluorescence and UV Detection. Molecules 2022; 27:molecules27134153. [PMID: 35807399 PMCID: PMC9268350 DOI: 10.3390/molecules27134153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acids are ubiquitous components of mammalian milk and greatly contribute to its nutritional value. The compositional analysis of free amino acids is poorly reported in the literature even though their determination in the biological fluids of livestock animals is necessary to establish possible nutritional interventions. In the present study, the free amino acid profiles in mature swine milk, colostrum and plasma were assessed using a targeted metabolomics approach. In particular, 20 amino acids were identified and quantified via two alternative and complementary reversed-phase HPLC methods, involving two stationary phases based on core-shell technology, i.e., Kinetex C18 and Kinetex F5, and two detection systems, i.e., a diode array detector (DAD) and a fluorescence detector (FLD). The sample preparation involved a de-proteinization step, followed by pre-chromatographic derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). The two optimized methods were validated for specificity, linearity, sensitivity, matrix effect, accuracy and precision and the analytical performances were compared. The analytical methods proved to be suitable for free amino acid profiling in different matrices with high sensitivity and specificity. The correlations among amino acid levels in different biological fluids can be useful for the evaluation of physio-pathological status and to monitor the effects of therapeutic or nutritional interventions in humans and animals.
Collapse
|
3
|
Holen JP, Tokach MD, Woodworth JC, DeRouchey JM, Gebhardt JT, Titgemeyer EC, Goodband RD. A meta-regression analysis to evaluate the influence of branched-chain amino acids in lactation diets on sow and litter growth performance. J Anim Sci 2022; 100:6565607. [PMID: 35395081 PMCID: PMC9074869 DOI: 10.1093/jas/skac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
The branched-chain amino acids (BCAA) Ile, Leu, and Val are three dietary essential amino acids for lactating sows; however, effects of dietary BCAA on sow and litter growth performance in the literature are equivocal. Thus, a meta-regression analysis was conducted to evaluate the effects of BCAA and their interactions in lactating sow diets to predict litter growth performance, sow bodyweight change, and sow feed intake. Thirty-four publications that represented 43 trials from 1997 to 2020 were used to develop a database that contained 167 observations. Diets for each trial were reformulated using NRC. 2012. Nutrient requirements of swine. 11th ed. Washington, DC: National Academies Press nutrient loading values in an Excel-based spreadsheet. Amino acids were expressed on a standardized ileal digestible (SID) basis. Regression model equations were developed with the MIXED procedure of SAS (Version 9.4, SAS Institute, Cary, NC) and utilized the inverse of reported squared SEM with the WEIGHT statement to account for heterogeneous errors across studies. Predictor variables were assessed with a step-wise manual forward selection for model inclusion. Additionally, statistically significant (P < 0.05) predictor variables were required to provide an improvement of at least 2 Bayesian information criterion units to be included in the final model. Significant predictor variables within three optimum equations developed for litter ADG included the count of weaned pigs per litter, NE, SID Lys, CP, sow ADFI, Val:Lys, Ile:Lys, and Leu:Val. For sow BW change, significant predictor variables within two developed models included litter size at 24 h, sow ADFI, Leu:Lys, and Ile + Val:Leu. The optimum equation for sow ADFI included Leu:Trp, SID Lys, NE, CP, and Leu:Lys as significant predictor variables. Overall, the prediction equations suggest that BCAA play an important role in litter growth, sow BW change, and feed intake during lactation; however, the influence of BCAA on these criteria is much smaller than that of other dietary components such as NE, SID Lys, sow ADFI, and CP.
Collapse
Affiliation(s)
- Julia P Holen
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Evan C Titgemeyer
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA,Corresponding author:
| |
Collapse
|
4
|
Luise D, Correa F, Fusco L, Bosi P, Trevisi P. Productive effects of a colostrum-oriented amino acid dietary supply for sows in transition from gestation to lactation. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1960210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diana Luise
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federico Correa
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Paolo Bosi
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Gao K, Wen X, Guo C, Wang L, Ban W, Yang X, Wu Z, Jiang Z. Effect of dietary arginine-to-lysine ratio in lactation on biochemical indices and performance of lactating sows. J Anim Sci 2020; 98:5893170. [PMID: 32803249 DOI: 10.1093/jas/skaa261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the effect of optimizing the total dietary arginine (Arg)-to-lysine (Lys) ratios on the metabolism of lactating sows and piglet performance by supplementation with l- Arg during lactation. A total of 200 multiparous sows (three to six parities, Yorkshire × Landrace) were selected and randomly and equally assigned to five groups in lactation, and finally, 36, 34, 35, 36, and 33 dams completed the study in the dietary treatments, respectively, where the diets consisted of five step-up Arg-to-Lys ratios (0.9, 1.0, 1.1, 1.2, and 1.3) by the addition of 0%, 0.10%, 0.20%, 0.30%, and 0.40% Arg. The diets contained 3.37 to 3.38 Mcal of digestible energy/kg energy, 17.73% to 17.75% crude protein, and 0.98% to 1.01% Lys and were fed ad libitum during lactation. The performance of sows and suckling piglets was measured, and plasma and milk samples were collected for analysis. The feed intake of sows as well as litter weight gain during lactation increased linearly (P ≤ 0.05), while maternal backfat and milk composition were not affected (P > 0.05) as the dietary Arg-to-Lys ratios increased. Analyzed plasma biochemical indices, including concentrations of free Arg, Orn, and Glu, and prolactin, insulin, and follicle-stimulating hormone, responded linearly (P ≤ 0.05) to increases in dietary Arg-to-Lys ratios. The dietary Arg-to-Lys ratios of 1.01 and 1.02 were optimal for maternal feed intake and litter weight gain, based on broken-line models. Collectively, the results of this study indicate that increasing total dietary Arg-to-Lys ratios in lactation was beneficial for the performance of lactating sows and suckling piglets, and dietary Arg-to-Lys ratios of 1.01 and 1.02 were optimal, from regression analyses, for the practical feeding of lactating sows.
Collapse
Affiliation(s)
- Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xiaolu Wen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Chunyan Guo
- CJ International Trading Co., LTD, Shanghai, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Wenjie Ban
- CJ International Trading Co., LTD, Shanghai, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zhijun Wu
- Guangxi State Farms Yongxin Husbandry Co., Ltd., Nanning, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| |
Collapse
|
6
|
Liu B, Zhou Y, Xia X, Wang C, Wei H, Peng J. Effects of Dietary Lysine Levels on Production Performance and Milk Composition of High-Producing Sows during Lactation. Animals (Basel) 2020; 10:E1947. [PMID: 33105774 PMCID: PMC7690574 DOI: 10.3390/ani10111947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/02/2022] Open
Abstract
Modern genotype sows require enhanced nutrition because of their larger body size and higher reproductive performance than 20 years ago. This study aimed to evaluate the effect of dietary Lys on the lactating of primiparous sows and the second lactating period to minimize sow body weight (BW) loss and maximize the survival rate of piglets and litter gain. A total of 160 primiparous Yorkshire sows were randomly allotted to one of four experimental lactation diets. Formulated to contain 0.84%, 0.94%, 1.04%, and 1.14% standardized ileal digestibility (SID) Lys and balanced in Met, Thr, Trp, and Val. No dietary effects were found on sow body weight (BW) and backfat thickness (BF) change and feed intake during lactation. However, the Lys intake (p = 0.04) of lactation increased linearly with increasing dietary Lys levels. In addition, 1.14% Lys for primiparous sow and 0.94% Lys for second parity sow during lactation increased the survival rate (p = 0.04), weight (p = 0.04), and ADG of piglets at d 21 (p = 0.03). The dietary Lys level did not affect colostrum compositions. However, the dry matter (p = 0.04) and protein (p = 0.03) in milk increased linearly with the increase in dietary Lys levels, whereas moisture decreased linearly (p = 0.05). The level of plasma urea nitrogen (PUN) also increased at d 21 of weaning (p = 0.04). These results indicate that high-yielding lactating sows required 1.14% SID Lys during parity 1, and 0.94% SID Lys during parity 2 to maximize the survival rate of piglets and litter gain, respectively. Moreover, the effects of dietary amino acid (AA) on the production performance of weaning pigs could be mediated through milk composition change.
Collapse
Affiliation(s)
- Bo Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (Y.Z.); (X.X.); (C.W.); (H.W.)
- Chinwhiz Agribusiness Co., Ltd., Weifang 261000, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (Y.Z.); (X.X.); (C.W.); (H.W.)
| | - Xiong Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (Y.Z.); (X.X.); (C.W.); (H.W.)
| | - Chao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (Y.Z.); (X.X.); (C.W.); (H.W.)
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (Y.Z.); (X.X.); (C.W.); (H.W.)
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (Y.Z.); (X.X.); (C.W.); (H.W.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
7
|
Che L, Xu M, Gao K, Wang L, Yang X, Wen X, Xiao H, Jiang Z. Effects of dietary valine supplementation during late gestation on the reproductive performance and mammary gland development of gilts. J Anim Sci Biotechnol 2020; 11:15. [PMID: 32099647 PMCID: PMC7029528 DOI: 10.1186/s40104-019-0420-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mammary gland development during late gestation in gilts is a major factor that alters the composition of colostrum and growth performance of piglets. Plasma valine is taken up and metabolized extensively by the mammary gland; however, the effects of valine on mammary gland development during late gestation are still unclear. Thirty primiparous gilts were divided into three treatment groups (n = 10) and received one of the three diets starting on day 75 of gestation until the day of farrowing. The total dietary valine to lysine ratio of the three diets was 0.63 (LV), 0.73 (MV), and 0.93 (HV), respectively. Results Dietary valine supplementation during late gestation did not affect (P > 0.05) the litter size and weight at farrowing; however, the piglet weight and average daily gain at weaning were linearly increased (P < 0.05) as the dietary valine increased. The highest piglet weight at weaning was observed when the gilts were provided the HV diet. Dietary valine supplementation linearly elevated (P < 0.05) protein, fat and solids-not-fat and some free amino acids content in colostrum. The concentration of prolactin in plasma of gilts was linearly increased in response to valine supplementation at days 1 and 10 of lactation (P < 0.05). Furthermore, with increasing dietary valine allowance, a linear increase (P < 0.05) was observed in the area of the lumen of alveolus and the content of DNA, RNA, and total protein in the mammary tissues at day 1 of lactation. Moreover, the protein expression of cyclin D1, p-mTOR, p-S6, and p-4EBP1 was also linearly increased (P < 0.05) in the mammary tissue at day 1 of lactation. However, no difference (P > 0.05) was observed in the indices related to mammary development and the mTOR signaling pathway at day 21 of lactation. Conclusion The results revealed that increasing the total dietary valine to lysine ratio to 0.93 during late gestation significantly enhances the piglet weight and average daily gain at weaning probably due to improved development of mammary gland.
Collapse
Affiliation(s)
- Long Che
- 1State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640 Guangdong China.,2College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046 Henan China
| | - Mengmeng Xu
- 1State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640 Guangdong China.,2College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046 Henan China
| | - Kaiguo Gao
- 1State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640 Guangdong China
| | - Li Wang
- 1State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640 Guangdong China
| | - Xuefen Yang
- 1State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640 Guangdong China
| | - Xiaolu Wen
- 1State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640 Guangdong China
| | - Hao Xiao
- 1State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640 Guangdong China
| | - Zongyong Jiang
- 1State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640 Guangdong China
| |
Collapse
|