1
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Heyer CME, Jaworski NW, Page GI, Zijlstra RT. Effect of Fiber Fermentation and Protein Digestion Kinetics on Mineral Digestion in Pigs. Animals (Basel) 2022; 12:2053. [PMID: 36009643 PMCID: PMC9404855 DOI: 10.3390/ani12162053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/10/2023] Open
Abstract
Nutrient kinetic data and the timing of nutrient release along the gastrointestinal tract (GIT), are not yet widely used in current feed formulations for pigs and poultry. The present review focuses on interactions between fermentable substrates (e.g., starch, fiber, and protein) and selected minerals on nutrient digestion and absorption to determine nutritional solutions to maximize animal performance, principally in the grower-finisher phase, with the aim of minimizing environmental pollution. For phosphorus (P), myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6), copper (Cu), and zinc (Zn), no standardized methodologies to assess in vitro mineral digestion exist. The stepwise degradation of InsP6 to lower inositol phosphate (InsP) forms in the GIT is rare, and inositol phosphate4 (InsP4) might be the limiting isomer of InsP degradation in diets with exogenous phytase. Furthermore, dietary coefficients of standardized total tract digestibility (CSTTD) of P might be underestimated in diets with fermentable ingredients because of increased diet-specific endogenous P losses (EPL), and further clarification is required to better calculate the coefficients of true total tract digestibility (CTTTD) of P. The quantification of fiber type, composition of fiber fractions, their influence on digestion kinetics, effects on digesta pH, and nutrient solubility related to fermentation should be considered for formulating diets. In conclusion, applications of nutrient kinetic data should be considered to help enhance nutrient digestion and absorption in the GIT, thereby reducing nutrient excretion.
Collapse
Affiliation(s)
- Charlotte M. E. Heyer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Greg I. Page
- Trouw Nutrition Innovation, 3800 AG Amersfoort, The Netherlands
| | - Ruurd T. Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
3
|
Xu J, Xie G, Li X, Wen X, Cao Z, Ma B, Zou Y, Zhang N, Mi J, Wang Y, Liao X, Wu Y. Sodium butyrate reduce ammonia and hydrogen sulfide emissions by regulating bacterial community balance in swine cecal content in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112827. [PMID: 34571416 DOI: 10.1016/j.ecoenv.2021.112827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Reducing the production of odor during swine breeding has attracted attention. Ammonia (NH3) and hydrogen sulfide (H2S) contributed to the odor emissions from swine breeding because NH3 emissions are high and hydrogen sulfide (H2S) has a low odor threshold. Sodium butyrate reduces the odor emissions caused by NH3 and H2S, but the corresponding mechanism is unclear. After mixing the feces of six fattening pigs, the mixture was used to process in vitro fermentation experiment. The purpose was researching the effect of sodium butyrate reduced NH3 and H2S emissions in swine cecal contents. The control group was denoted CK, and the treatment groups with different sodium butyrate concentrations (0.015%, 0.030% and 0.150%) were denoted L, M and H. The NH3, H2S, total gas production and physicochemical indexes were measured, and the bacterial communities in the fermented product were analyzed by 16 S rDNA sequencing. The results showed that group M reduced NH3, H2S and total gas production by 17.96%, 12.26% and 30.30%, respectively. Sodium butyrate promoted SO42- accumulation and lowered the pH. Importantly, sodium butyrate decreased the relative abundance of bacteria positively correlated with NH3 and H2S production, but increased the negatively correlated ones. Proteobacteria made a greater contribution to reducing emissions than did other bacterial phyla. Our results showed that adding 0.030% sodium butyrate can significantly reduce NH3 and H2S production, which occurred via alterations in the physicochemical indicators to adjust the abundance of the bacteria related to odor production, including Proteobacteria.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | | | - Xinhua Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Cao
- WENS Foodstuff Group Co., Ltd., Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
4
|
Zhang Z, Wang Y, Zhang Y, Chen K, Chang H, Ma C, Jiang S, Huo D, Liu W, Jha R, Zhang J. Synergistic Effects of the Jackfruit Seed Sourced Resistant Starch and Bifidobacterium pseudolongum subsp. globosum on Suppression of Hyperlipidemia in Mice. Foods 2021; 10:foods10061431. [PMID: 34205515 PMCID: PMC8235523 DOI: 10.3390/foods10061431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Approximately 17 million people suffer from cardiovascular diseases caused by hyperlipidemia, making it a serious global health concern. Among others, resistant starch (RS) has been widely used as a prebiotic in managing hyperlipidemia conditions. However, some studies have reported limited effects of RS on body weight and blood lipid profile of the host, suggesting further investigation on the synergistic effects of RS in combination with probiotics as gut microbes plays a role in lipid metabolism. This study evaluated the effects of jackfruit seed sourced resistant starch (JSRS) as a novel RS on mice gut microbes and hyperlipidemia by performing 16s rRNA and shotgun metagenomic sequencing. The results showed that 10% JSRS had a limited preventive effect on bodyweight and serum lipid levels. However, the JSRS promoted the growth of Bifidobacterium pseudolongum, which indicated the ability of B. pseudolongum for JSRS utilization. In the validation experiment, B. pseudolongum interacted with JSRS to significantly reduce bodyweight and serum lipid levels and had a therapeutic effect on hepatic steatosis in mice. Collectively, this study revealed the improvements of hyperlipidemia in mice by the synergistic effects of JSRS and B. pseudolongum, which will help in the development of “synbiotics” for the treatment of hyperlipidemia in the future.
Collapse
Affiliation(s)
- Zeng Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.Z.); (Y.W.); (H.C.); (C.M.); (S.J.); (D.H.)
| | - Yuanyuan Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.Z.); (Y.W.); (H.C.); (C.M.); (S.J.); (D.H.)
| | - Yanjun Zhang
- Spice and Beverages Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning 571533, China;
| | - Kaining Chen
- Hainan Provincial People’s Hospital, Haikou 570311, China;
| | - Haibo Chang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.Z.); (Y.W.); (H.C.); (C.M.); (S.J.); (D.H.)
| | - Chenchen Ma
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.Z.); (Y.W.); (H.C.); (C.M.); (S.J.); (D.H.)
| | - Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.Z.); (Y.W.); (H.C.); (C.M.); (S.J.); (D.H.)
| | - Dongxue Huo
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.Z.); (Y.W.); (H.C.); (C.M.); (S.J.); (D.H.)
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R.C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.Z.); (Y.W.); (H.C.); (C.M.); (S.J.); (D.H.)
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
- Correspondence:
| |
Collapse
|