1
|
Palmonari A, Federiconi A, Formigoni A. Animal board invited review: The effect of diet on rumen microbial composition in dairy cows. Animal 2024; 18:101319. [PMID: 39305824 DOI: 10.1016/j.animal.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Ruminants play an important part in the food supply chain, and manipulating rumen microbiota is important to maximising ruminants' production. Rumen microbiota through rumen fermentation produces as major end products volatile fatty acids that provide animal's energy requirements, and microbial CP. Diet is a key factor that can manipulate rumen microbiota, and each variation of the physical and chemical composition creates a specific niche that selects specific microbes. Alteration in the chemical composition of forage, the addition of concentrates in the diet, or the inclusion of plant extract and probiotics, can induce a change in rumen microbiota. High-throughput sequencing technologies are the approaches utilised to investigate the microbial system. Also, the application of omics technologies allows us to understand rumen microbiota composition and these approaches are useful to improve selection programmes. The aim of this review was to summarise the knowledge about rumen microbiota, its role in nutrient metabolism, and how diet can influence its composition.
Collapse
Affiliation(s)
- A Palmonari
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - A Federiconi
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - A Formigoni
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|
2
|
Lobón S, Joy M, Casasús I, Blanco M. Field pea can replace soybean meal-corn mixtures in the fattening concentrate of young bulls improving the digestibility. Res Vet Sci 2022; 150:83-88. [PMID: 35809417 DOI: 10.1016/j.rvsc.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The inclusion of pea (Pisum sativum) in the fattening concentrate at 0%, 15%, 30%, and 45% as a replacement for soybean meal and corn was evaluated on in vitro and in vivo digestibility studies of young Parda de Montaña bulls. In the in vitro trial, gas production was determined with an Ankom system for 48 h. The 30%pea and 45%pea concentrates increased the organic matter (OM) degradability, the ammonia-N content and the ratio of acetic:propionic, with no effect on gas production, final ruminal pH and total volatile fatty acid production. In the in vivo assay, 4 young bulls (initial weight 251 ± 4 kg) received restricted amounts of concentrates plus straw during 4 consecutive experimental periods. No differences in intake were observed and 30%pea and 45%pea had higher digestibility of crude protein (CP), and OM than the rest of treatments. The nitrogen intake increased linearly with the inclusion of pea with similar nitrogen urinary and faecal excretions, and the nitrogen retained was greater in 30%pea and 45%pea than the rest of treatments. The plasma concentrations of IGF-1, total protein, β-hydroxybutyrate and urea at the beginning and at the end of each period were not affected by the inclusion of pea. In conclusion, the total replacement of soybean-corn mixtures by pea in the fattening concentrate of bulls could be recommended as it improved the CP digestibility and nitrogen retention.
Collapse
Affiliation(s)
- S Lobón
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza). Zaragoza, Spain
| | - M Joy
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza). Zaragoza, Spain
| | - I Casasús
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza). Zaragoza, Spain
| | - M Blanco
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza). Zaragoza, Spain.
| |
Collapse
|
3
|
Costa-Roura S, Villalba D, Balcells J, De la Fuente G. First Steps into Ruminal Microbiota Robustness. Animals (Basel) 2022; 12:2366. [PMID: 36139226 PMCID: PMC9495070 DOI: 10.3390/ani12182366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Despite its central role in ruminant nutrition, little is known about ruminal microbiota robustness, which is understood as the ability of the microbiota to cope with disturbances. The aim of the present review is to offer a comprehensive description of microbial robustness, as well as its potential drivers, with special focus on ruminal microbiota. First, we provide a briefing on the current knowledge about ruminal microbiota. Second, we define the concept of disturbance (any discrete event that disrupts the structure of a community and changes either the resource availability or the physical environment). Third, we discuss community resistance (the ability to remain unchanged in the face of a disturbance), resilience (the ability to return to the initial structure following a disturbance) and functional redundancy (the ability to maintain or recover initial function despite compositional changes), all of which are considered to be key properties of robust microbial communities. Then, we provide an overview of the currently available methodologies to assess community robustness, as well as its drivers (microbial diversity and network complexity) and its potential modulation through diet. Finally, we propose future lines of research on ruminal microbiota robustness.
Collapse
|
4
|
Totakul P, Viennasay B, Sommai S, Matra M, Infascelli F, Wanapat M. Chaya (Cnidoscolus aconitifolius, Mill. Johnston) pellet supplementation improved rumen fermentation, milk yield and milk composition of lactating dairy cows. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Parra MC, Costa D, Meale SJ, Silva LFP. Rumen bacteria and feed efficiency of beef cattle fed diets with different protein content. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sarri L, Costa-Roura S, Balcells J, Seradj AR, de la Fuente G. The Impact of Genetics on Gut Microbiota of Growing and Fattening Pigs under Moderate N Restriction. Animals (Basel) 2021; 11:ani11102846. [PMID: 34679867 PMCID: PMC8532768 DOI: 10.3390/ani11102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization of intestinal microbiota is of great interest due to its relevant impact on growth, feed efficiency and pig carcass quality. Microbial composition shifts along the gut, but it also depends on the host (i.e., age, genetic background), diet composition and environmental conditions. To simultaneously study the effects of producing type (PT), production phase (PP) and dietary crude protein (CP) content on microbial populations, 20 Duroc pigs and 16 crossbred pigs (F2), belonging to growing and fattening phases, were used. Half of the pigs of each PT were fed a moderate CP restriction (2%). After sacrifice, contents of ileum, cecum and distal colon were collected for sequencing procedure. Fattening pigs presented higher microbial richness than growing pigs because of higher maturity and stability of the community. The F2 pigs showed higher bacterial alpha diversity and microbial network complexity (cecum and colon), especially in the fattening phase, while Duroc pigs tended to have higher Firmicutes/Bacteroidetes ratio in cecum segment. Lactobacillus was the predominant genus, and along with Streptococcus and Clostridium, their relative abundance decreased throughout the intestine. Although low CP diet did not alter the microbial diversity, it increased interaction network complexity. These results have revealed that the moderate CP restriction had lower impact on intestinal microbiota than PP and PT of pigs.
Collapse
|
7
|
Sun HZ, Peng KL, Xue MY, Liu JX. Metagenomics analysis revealed the distinctive ruminal microbiome and resistive profiles in dairy buffaloes. Anim Microbiome 2021; 3:44. [PMID: 34210366 PMCID: PMC8247143 DOI: 10.1186/s42523-021-00103-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Antimicrobial resistance poses super challenges in both human health and livestock production. Rumen microbiota is a large reservoir of antibiotic resistance genes (ARGs), which show significant varations in different host species and lifestyles. To compare the microbiome and resistome between dairy cows and dairy buffaloes, the microbial composition, functions and harbored ARGs of rumen microbiota were explored between 16 dairy cows (3.93 ± 1.34 years old) and 15 dairy buffaloes (4.80 ± 3.49 years old) using metagenomics. RESULTS Dairy buffaloes showed significantly different bacterial species (LDA > 3.5 & P < 0.01), enriched KEGG pathways and CAZymes encoded genes (FDR < 0.01 & Fold Change > 2) in the rumen compared with dairy cows. Distinct resistive profiles were identified between dairy cows and dairy buffaloes. Among the total 505 ARGs discovered in the resistome of dairy cows and dairy buffaloes, 18 ARGs conferring resistance to 16 antibiotic classes were uniquely detected in dairy buffaloes. Gene tcmA (resistance to tetracenomycin C) presented high prevalence and age effect in dairy buffaloes, and was also highly positively correlated with 93 co-expressed ARGs in the rumen (R = 0.98 & P = 5E-11). In addition, 44 bacterial species under Lactobacillus genus were found to be associated with tcmA (R > 0.95 & P < 0.001). L. amylovorus and L. acidophilus showed greatest potential of harboring tcmA based on co-occurrence analysis and tcmA-containing contigs taxonomic alignment. CONCLUSIONS The current study revealed distinctive microbiome and unique ARGs in dairy buffaloes compared to dairy cattle. Our results provide novel understanding on the microbiome and resistome of dairy buffaloes, the unique ARGs and associated bacteria will help develop strategies to prevent the transmission of ARGs.
Collapse
Affiliation(s)
- Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ke-Lan Peng
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ming-Yuan Xue
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
8
|
Li Z, Shen J, Xu Y, Zhu W. Metagenomic analysis reveals significant differences in microbiome and metabolic profiles in the rumen of sheep fed low N diet with increased urea supplementation. FEMS Microbiol Ecol 2021; 96:5861934. [PMID: 32578861 DOI: 10.1093/femsec/fiaa117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Urea is a cost-effective replacement for feed proteins in ruminant diets. However, its metabolism by the rumen microbiome is not fully understood. Here, rumen contents were collected from 18 male sheep fed one of the following three treatments: a low N basal diet with no urea (UC, 0 g/kg dry matter (DM)), low urea (LU, 10 g/kg DM) and high urea (HU, 30 g/kg DM). Principal coordinate analysis showed that the microbial composition and functional profiles of the LU treatment significantly differed from the UC and HU treatments. The genera Prevotella, Succinivibrio, Succinatimonas and Megasphaera were higher in the LU rumen, while the genera Clostridium, Ruminococcus and Butyrivibrio were enriched in the UC and HU rumen. The aspartate-glutamate and arginine-proline metabolic pathways and valine, leucine and isoleucine biosynthesis were higher in the LU rumen. The cysteine and methionine metabolism, lysine degradation and fructose and pentose phosphate metabolism pathways were higher in the UC and HU rumen. The protozoa population in the HU treatment was higher than in the UC and LU treatments. These findings suggest that the rumen microbiome of sheep fed low N diet with different urea supplementation are significantly different.
Collapse
Affiliation(s)
- Zhipeng Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, Jilin Province, China
| | - Junshi Shen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yixuan Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
9
|
Costa-Roura S, Balcells J, de la Fuente G, Mora-Gil J, Llanes N, Villalba D. Nutrient utilization efficiency, ruminal fermentation and microbial community in Holstein bulls fed concentrate-based diets with different forage source. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|