1
|
Hussain SM, Bano AA, Ali S, Rizwan M, Adrees M, Zahoor AF, Sarker PK, Hussain M, Arsalan MZUH, Yong JWH, Naeem A. Substitution of fishmeal: Highlights of potential plant protein sources for aquaculture sustainability. Heliyon 2024; 10:e26573. [PMID: 38434023 PMCID: PMC10906437 DOI: 10.1016/j.heliyon.2024.e26573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
High protein content, excellent amino acid profile, absence of anti-nutritional factors (ANFs), high digestibility and good palatability of fishmeal (FM), make it a major source of protein in aquaculture. Naturally derived FM is at risk due to an increase in its demand, unsustainable practices, and price. Thus, there is an urgent need to find affordable and suitable protein sources to replace FM. Plant protein sources are suitable due to their widespread availability and low cost. However, they contained certain ANFs, deficiency of some amino acids, low nutrient bioavailability and poor digestibility due to presence of starch and fiber. These unfavourable characteristics make them less suitable for feed as compared to FM. Thus, these potential challenges and limitations associated with various plant proteins have to be overcome by using different methods, i.e. enzymatic pretreatments, solvent extraction, heat treatments and fermentation, that are discussed briefly in this review. This review assessed the impacts of plant products on growth performance, body composition, flesh quality, changes in metabolic activities and immune response of fishes. To minimize the negative effects and to enhance nutritional value of plant products, beneficial functional additives such as citric acid, phytase and probiotics could be incorporated into the plant-based FM. Interestingly, these additives improve growth of fishes by increasing digestibility and nutrient utilization of plant based feeds. Overall, this review demonstrated that the substitution of fishmeal by plant protein sources is a plausible, technically-viable and practical option for sustainable aquaculture feed production.
Collapse
Affiliation(s)
- Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Aumme Adeeba Bano
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Pallab K. Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Majid Hussain
- Department of Fisheries and Aquaculture, University of Okara, Okara, Punjab, 56300, Pakistan
| | | | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| | - Adan Naeem
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
2
|
Jiang W, Wang H, Zhang L, Mi H, Deng J. High replacement of soybean meal by different types of rapeseed meal is detrimental to rainbow trout ( Oncorhynchus mykiss) growth, antioxidant capacity, non-specific immunity and Aeromonas hydrophila tolerance. Front Nutr 2024; 11:1363411. [PMID: 38379546 PMCID: PMC10876845 DOI: 10.3389/fnut.2024.1363411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
A 12-week feeding trial was conducted to evaluate the effects of replacing soybean meal with different types of rapeseed meal (RSM; Chinese 95-type (oil press model) rapeseed meal [C95RM], Chinese 200-type rapeseed meal [C200RM], cold pressed rapeseed cake [CPRC], Indian rapeseed meal [IRM] and Canadian rapeseed meal [CRM]) on growth, antioxidant capacity, non-specific immunity and Aeromonas hydrophila infection tolerance in 990 fingering (average weight 12.77 ± 0.01 g) rainbow trout (Oncorhynchus mykiss). A basal diet was prepared using fishmeal and soybean meal as the main protein sources, the other 10 diets were formulated with five types of RSM at 20% (C95RM20, C200RM20, CPRC20, IRM20, CRM20) or 35% (C95RM35, C200RM35, CPRC35, IRM35, CRM35) inclusion levels to replace iso-nitrogenous soybean meal. Regardless of the RSM source, dietary inclusion of 20% RSM significantly reduced the weight gain rate (WGR) and digestive enzymes activities (except C200RM20) of fish, but increased the blood urea nitrogen (BUN) and hepatic malondialdehyde (MDA) content (except CRM20). Fish fed with CPRC20 and IRM20 exhibited relatively higher plasma cortisol and MDA content, but lower content/activities of triiodothyronine (T3), thyroxine (T4) and glutathione peroxidase (GPx) in plasma, lysozyme (LZM) and complement 3 (C3) in serum, catalase (CAT) in liver, and respiratory burst activity (RBA) of head kidney macrophages. The intestinal and hepatic tissues fed with 20% RSM were damaged to some extent, with the CPRC20 and IRM20 groups being the most severely affected. Regardless of the RSM source, dietary inclusion of 35% RSM significantly decreased WGR and digestive enzymes activities, but significantly increased plasma BUN and MDA content. The fish fed with CPRC35 and IRM35 exhibited relatively higher plasma cortisol, MDA, serum triglyceride, BUN content, but lower content/activities of T3, T4, C3, and LZM in serum, CAT, peroxidase and GPx in plasma, CAT in liver, RBA and phagocytic activity of head kidney macrophage. The hepatic and intestinal tissues damage was the worst in the IRM35 group among the 35% RSM inclusion groups. These results indicate that including ≥20% RSM in the diet, regardless of the source, reduced the growth, antioxidant capacity, immunity, and survival to Aeromonas hydrophila infection in rainbow trout.
Collapse
Affiliation(s)
- Wen Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hengzhi Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Chengdu, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Chengdu, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Wang C, Zhao Z, Lu S, Liu Y, Han S, Jiang H, Yang Y, Liu H. Physiological, Nutritional and Transcriptomic Responses of Sturgeon ( Acipenser schrenckii) to Complete Substitution of Fishmeal with Cottonseed Protein Concentrate in Aquafeed. BIOLOGY 2023; 12:biology12040490. [PMID: 37106691 PMCID: PMC10135981 DOI: 10.3390/biology12040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
This study estimated the effect of substituting fishmeal completely with cottonseed protein concentrate (CPC) in the diet of sturgeon (Acipenser schrenckii) on growth, digestive physiology, and hepatic gene expression. A control diet containing fishmeal and an experimental diet based on CPC was designed. The study was conducted for 56 days in indoor recirculating aquaculture systems. The results showed that weight gain, feed efficiency, and whole-body essential amino acids (EAAs) all decreased significantly in the experimental group, while whole-body non-essential amino acids (NEAAs) and serum transaminase activity increased (p < 0.05). The activity of digestive enzymes in the mid-intestine was significantly reduced (p < 0.05), and liver histology revealed fatty infiltration of hepatocytes. The hepatic transcriptome revealed an upregulation of genes linked to metabolism, including steroid biosynthesis, pyruvate metabolism, fatty acid metabolism, and amino acid biosynthesis. These findings indicate that fully replacing fishmeal with CPC harms A. schrenckii growth and physiology. This study provides valuable data for the development of improved aquafeeds and the use of molecular methods to evaluate the diet performance of sturgeon.
Collapse
Affiliation(s)
- Chang'an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shaoxia Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yang Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shicheng Han
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hongbai Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| |
Collapse
|