1
|
Kim HW, Kim JH, Han GP, Kil DY. Increasing concentrations of dietary threonine, tryptophan, and glycine improve growth performance and intestinal health with decreasing stress responses in broiler chickens raised under multiple stress conditions. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:145-153. [PMID: 39257858 PMCID: PMC11385068 DOI: 10.1016/j.aninu.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 09/12/2024]
Abstract
The current study aimed to compare the effects of increasing concentrations of dietary threonine (Thr), tryptophan (Trp), and glycine (Gly) on growth performance, stress biomarkers, and intestinal function in broiler chickens under multiple stress conditions. Five hundred sixty broiler chickens at 21 d old were randomly allotted to 5 treatments with 8 replicates. Birds in a positive control (PC) treatment were raised under low stock density (16.9 birds/m2 per cage) with recommended environmental conditions, whereas birds in 4 treatments were subjected to multiple stress conditions: a cyclic heat stress of 30 ± 0.3 °C for 10 h and 23 ± 0.2 °C for 14 h per day with high stock density (25.3 birds/m2 per cage). A basal diet was assigned to both PC and negative control (NC) treatments. Three additional diets were individually formulated to contain double concentrations of digestible Thr, Trp, or Gly + Ser compared with their concentrations in the basal diet. The experiment lasted for 14 d. Results showed that NC treatment had less growth performance (P < 0.001), jejunal goblet cell counts (P = 0.018), and trans-epithelial electrical resistance (TEER; P < 0.001), but greater (P = 0.026) feather corticosterone (CORT) concentrations than PC treatment. Thr treatment showed the least (P < 0.001) feed conversion ratio (FCR) among treatments under multiple stress conditions. Thr, Trp, and Gly treatments had less (P = 0.026) feather CORT concentrations, but had greater (P < 0.001) TEER than NC treatment. In conclusion, increasing concentrations of dietary Thr, Trp, or Gly improve the growth performance and intestinal health in broiler chickens with decreasing stress response under multiple stress conditions.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
2
|
Barua M, Abdollahi MR, Zaefarian F, Wester TJ, Girish CK, Chrystal PV, Ravindran V. Effect of age on the standardized ileal amino acid digestibility of soybean meal and canola meal in broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:11-22. [PMID: 38131028 PMCID: PMC10730339 DOI: 10.1016/j.aninu.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 12/23/2023]
Abstract
Standardized ileal digestibility coefficients (SIDC) of nitrogen (N) and amino acids (AA) in two protein sources (soybean meal [SBM] and canola meal [CM]) were investigated at six broiler ages (d 7, 14, 21, 28, 35, and 42). Two assay diets were formulated to contain either SBM (413 g/kg) or CM (553 g/kg) as the sole dietary AA source. Titanium dioxide (5 g/kg) was added as an indigestible marker. A total of 696 male broilers at 1 d old were allotted to 12 replicate cages per age group. Each assay diet was offered to birds for 4 d prior to the ileal digesta collection on d 7 (14 birds/cage), 14 (12 birds/cage), 21 (10 birds/cage), 28 (8 birds/cage), 35 (8 birds/cage) and 42 (6 birds/cage), respectively. The apparent digestibility coefficients were standardized using age-specific basal endogenous AA flows. In the SBM group, though the SIDC of N tended to be influenced (quadratic; P = 0.075) by age, no linear or quadratic response of age effect was observed on the average SIDC of indispensable (IAA) and total AA (TAA). An age effect (quadratic; P < 0.05) was observed on the average SIDC of dispensable AA (DAA) in SBM with the highest value recorded at d 7, followed by a decrease from d 14 to 28, which increased beyond d 35. The SIDC of some individual AA (Arg, Thr, Trp, Cys, Pro) were affected (P < 0.05 or P < 0.001) in a quadratic manner by age. In the CM, the SIDC of N, average SIDC of IAA, DAA and TAA were influenced (quadratic; P < 0.05 or P < 0.001) by age. The SIDC of N and average SIDC of DAA and TAA were higher from d 7 to 14, declined at d 21, and then increased beyond d 28. The average SIDC of IAA was low between d 7 and 28 and increased thereafter. The SIDC of individual AA were affected (linear or quadratic; P < 0.05 or P < 0.001) by different magnitudes by age. The age influence on the SIDC AA was variable, depending on the protein source and AA. The results demonstrate that age-specific SIDC AA data might need consideration in broiler feed formulations.
Collapse
Affiliation(s)
- Mukti Barua
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
- Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - M. Reza Abdollahi
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Faegheh Zaefarian
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Timothy J. Wester
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | | | | | - Velmurugu Ravindran
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
Lundgren KA, Løvlie H. Increased dietary 5-hydroxytryptophan reduces fearfulness in red junglefowl hens ( Gallus gallus). Front Physiol 2023; 14:1213986. [PMID: 37766752 PMCID: PMC10520959 DOI: 10.3389/fphys.2023.1213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Our production animals typically suffer poor welfare, which can be revealed by measuring the affective state these animals are in. Negative affective state is linked to poorer welfare, and can be measured as fearfulness. While continuing to research how to improve animal welfare, a compliment to reduce negative affective state could therefore be to reduce individuals' fearfulness, similar to how negative affective states are medicated in humans. A proposed mechanism for this is via the monoaminergic systems. This is based on previous studies across species that have linked the serotonergic system and fear-related behaviour. We here aimed to experimentally manipulate the serotonergic system in red junglefowl hens (Gallus gallus), the main ancestor of all domesticated chickens. We measured fearfulness as latency remaining immobile in a tonic immobility test, and did so both before and after our experimental manipulation. We set out to experimentally manipulate the serotonergic system via sub-chronic dietary treatment of 5-hydroxytryptophan (the precursor to serotonin). Our dietary manipulation of 5-hydroxytryptophan significantly reduced measured fearfulness in the manipulated hens, while latency in tonic immobility did not significantly change in our unmanipulated, control hens. This finding is promising since it indicates that increased tryptophan levels can be used to reduce fearfulness. Additionally, our result suggests that this can be done non-invasively via food (instead of injections), thus presenting a potentially feasible manipulation also for larger settings. Nevertheless, the serotonergic system is complex and its role in modulating behaviour in the fowl should be explored further to evaluate our findings, and more directly explored also in a production setting.
Collapse
Affiliation(s)
| | - Hanne Løvlie
- IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Perera WNU, Abdollahi MR, Zaefarian F, Wester TJ, Ravindran V. Barley, an Undervalued Cereal for Poultry Diets: Limitations and Opportunities. Animals (Basel) 2022; 12:ani12192525. [PMID: 36230265 PMCID: PMC9558528 DOI: 10.3390/ani12192525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary With the ever-increasing demand for poultry products, the continuous supply of conventional cereal grains such as maize has become a challenge. Barley has been recognised as a potential alternative feed ingredient that can replace common cereal grains in poultry diets. However, due to several limitations such as the presence of various anti-nutritive factors and the variability in nutrient composition and quality, the use of barley in poultry diets remains comparatively low. The previous findings on the optimum use of barley in poultry diets are also inconsistent primarily due to differences in research methodologies. The importance of using accurate nutrient profiles for specific barley cultivars to formulate barley-based diets is emphasised in this review. Moreover, the need to adapt feed processing conditions suitable to different barley cultivars to increase the inclusion of barley in poultry diets is highlighted in this review. Abstract The supply of conventional cereal grains, especially of maize, will be a significant constraint to the future growth of the poultry industry. Various alternative feed ingredients are being tested to replace maize in poultry diets. Barley (Hordeum vulgare L.) is one such feed ingredient, the use of which remains limited in poultry diets due to its low metabolisable energy, presence of anti-nutritive, soluble non-starch polysaccharides and consequent inter-cultivar variability. Differences in research methodologies used in published studies have also contributed to the inconsistent findings, preventing a good understanding of the nutritional value of barley for poultry. The importance of using accurate nutrient profiles, specifically metabolisable energy and digestible amino acids, for specific barley cultivars to formulate barley-based diets is emphasised. Nutritionists should also pay close attention to feed processing conditions tailored to the specific barley cultivars to increase the barley inclusion in poultry diets.
Collapse
Affiliation(s)
- W. Nipuna U. Perera
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - M. Reza Abdollahi
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Faegheh Zaefarian
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Timothy J. Wester
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Velmurugu Ravindran
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
- Correspondence: ; Tel.: +64-27-224-0350
| |
Collapse
|
5
|
Influence of Age on the Standardized Ileal Amino Acid Digestibility of Corn and Barley in Broilers. Animals (Basel) 2021; 11:ani11123575. [PMID: 34944350 PMCID: PMC8697954 DOI: 10.3390/ani11123575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to determine the standardized ileal digestibility coefficients (SIDCs) of nitrogen (N) and amino acids (AAs) in corn and barley at six different ages (days 7, 14, 21, 28, 35 and 42) of broilers using the direct method. The apparent AA digestibility coefficients were corrected using age-appropriate basal endogenous AA losses. No age effect (p > 0.05) was noted for the SIDC of N in corn. The average SIDC of indispensable AAs (IAAs) and total AAs (TAAs) was influenced in a quadratic manner (p < 0.05) with the values being higher at day 7 that decreased at day 14, increased and plateaued between days 21 and 35 and dropped again at day 42. The average SIDC of dispensable AAs (DAAs) was influenced linearly (p < 0.05). In barley, the SIDC of N and average IAAs, DAAs and TAAs was affected (quadratic; p < 0.001) by age. The digestibility increased from day 7 to 21 and then plateaued up to day 42. The present findings confirm that the SIDC of AA in corn and barley are influenced by broiler age and that the age effect on AA digestibility may need to be considered for precise feed formulation.
Collapse
|
6
|
Barua M, Abdollahi MR, Zaefarian F, Wester TJ, Girish CK, Chrystal PV, Ravindran V. An investigation into the influence of age on the standardized amino acid digestibility of wheat and sorghum in broilers. Poult Sci 2021; 100:101466. [PMID: 34628287 PMCID: PMC8517207 DOI: 10.1016/j.psj.2021.101466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022] Open
Abstract
Standardized ileal digestibility coefficients (SIDC) of nitrogen (N) and amino acids (AA) in wheat and sorghum at 6 different ages (d 7, 14, 21, 28, 35, and 42) of broilers were determined. Two assay diets were formulated to contain 93.8% of each grain as the sole source of AA in the diet. Titanium dioxide (0.5%) was added as an indigestible marker. Each assay diet was fed to 6 replicate cages housing 14 (d 7), 12 (d 14), 10 (d 21), 8 (d 28), 8 (d 35), and 6 (d 42) birds per cage for 4 d prior to ileal digesta collection. The apparent ileal digestibility coefficients (AIDC) were standardized by using the age-appropriate basal endogenous AA losses. In the case of wheat, AIDC of N and all AA increased (linear or quadratic, P < 0.05 to 0.001) with advancing age. No age effect was noticed on the SIDC of N, average of indispensable (IAA) and dispensable AA (DAA), though the average of total AA (TAA) tended (linear, P = 0.09) to increase as birds grew older. In sorghum, the AIDC of N, average of IAA and DAA were unaffected (P > 0.05) by age. The SIDC of N, average SIDC of IAA, DAA and TAA were higher at d 7, reduced at d 14 and then plateaued. Among the IAA, the SIDC of Arg, His, Ile, Leu, Lys, Thr, Val, and the SIDC of all individual DAA (except Cys) decreased with age (linear or quadratic, P < 0.05 to 0.001) with higher values at d 7. The higher SIDC values determined at d 7 were due to higher EAA losses during wk 1. The results showed that broiler age influences AA digestibility and this may need be considered in practical feed formulations. The age effect is variable depending on the grain type and specific AA.
Collapse
Affiliation(s)
- M Barua
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh.
| | - M R Abdollahi
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - F Zaefarian
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - T J Wester
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - C K Girish
- Nutrition and Care, Animal Nutrition, Evonik (SEA) Pte. Ltd, 609927 Singapore
| | - P V Chrystal
- Complete Feed Solutions, Howick 2145, Auckland, New Zealand
| | - V Ravindran
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
7
|
Fouad AM, El-Senousey HK, Ruan D, Wang S, Xia W, Zheng C. Tryptophan in poultry nutrition: Impacts and mechanisms of action. J Anim Physiol Anim Nutr (Berl) 2021; 105:1146-1153. [PMID: 33655568 DOI: 10.1111/jpn.13515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 01/09/2023]
Abstract
Many studies have shown that productivity, immune system, antioxidant status, and meat and egg quality can be optimized by dietary supplementation with amino acids that are not usually added to poultry diets. Understanding the effects of these amino acids may encourage feed manufacturers and poultry producers to include them as additives. One of these amino acids is tryptophan (Trp). The importance of Trp is directly related to its role in protein anabolism and indirectly related to its metabolites such as serotonin and melatonin. Thus, Trp could affect the secretion of hormones, development of immune organs, meat and egg production, and meat and egg quality in poultry raised under controlled or stressed conditions. Therefore, this review discusses the main roles of Trp in poultry production and its mode (s) of action in order to help poultry producers decide whether they need to add Trp to poultry diets. Further areas of research are also identified to address information gaps.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuang Wang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Xia
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|