1
|
Khizar A, Fatima M, Khan N, Rashid MA. Xylooligosaccharide supplementation in rice protein concentrate based diets: A comprehensive analysis of performance and health of Labeo rohita. J Anim Physiol Anim Nutr (Berl) 2024; 108:1059-1071. [PMID: 38500315 DOI: 10.1111/jpn.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
The primary aim of this study was to examine the impact of xylooligosaccharide (XOS) in rice protein concentrate (RPC) based diets on the growth performance, body composition, digestive enzymes, intestinal morphology and blood biochemistry of Labeo rohita fingerlings. Four different XOS levels (0%, 0.5%, 1% and 2%) were used at each RPC (75% and 100%) level. Twenty-five fish per tank with an average initial weight of 25 ± 0.05 g were randomly assigned (Randomised complete block design) to each of the 8 groups in triplicate aquaria (36 × 16 × 12″) and then fed with respective diets @ 3% body weight for 90 days. The results showed significant improvements in growth performance, such as increased weight gain %, specific growth rate, and protein efficiency ratio and improved feed conversion ratio in 1% XOS supplemented diet at 75% RPC. A significant decrease in serum alkaline phosphatase activity (ALP) and plasma melanodialdehyde (MDA) were observed at 1% XOS level in 75% RPC based diets, respectively. Meanwhile, the lowest total cholesterol and highest lysozyme activity were observed in 1% XOS supplemented diet at 75% RPC levels. Moreover, the serum (alanine aminotransferase and aspartate transaminase) and plasma (superoxide dismutase, triglyceride, high density and low density lipoprotein) activities showed nonsignificant effects among the treatments. Furthermore, the digestive enzymes (protease & lipase) and intestinal morphology were significantly influenced at 1% XOS in the 75% RPC-based diet. Polynomial regression analysis showed that 1.25% XOS is the optimum requirement for the growth of rohu fingerlings when fed at 75% RPC based diets. Overall, it was concluded that the 75% RPC diet was efficiently replaced by fishmeal along with 1% XOS addition in L. rohita fingerlings without any negative effect on growth performance and intestinal health.
Collapse
Affiliation(s)
- Ayesha Khizar
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mahroze Fatima
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noor Khan
- Institute of Zoology, University of Punjab, Lahore, Pakistan
| | - Muhammad Afzal Rashid
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Srirengaraj V, Razafindralambo HL, Rabetafika HN, Nguyen HT, Sun YZ. Synbiotic Agents and Their Active Components for Sustainable Aquaculture: Concepts, Action Mechanisms, and Applications. BIOLOGY 2023; 12:1498. [PMID: 38132324 PMCID: PMC10740583 DOI: 10.3390/biology12121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Aquaculture is a fast-emerging food-producing sector in which fishery production plays an imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which represent significant issues nowadays. One of the reasons for these threats is the excessive use of antibiotics and synthetic drugs that have harmful impacts on the aquatic atmosphere. It is not surprising that functional and nature-based feed ingredients such as probiotics, prebiotics, postbiotics, and synbiotics have been developed as natural alternatives to sustain a healthy microbial environment in aquaculture. These functional feed additives possess several beneficial characteristics, including gut microbiota modulation, immune response reinforcement, resistance to pathogenic organisms, improved growth performance, and enhanced feed utilization in aquatic animals. Nevertheless, their mechanisms in modulating the immune system and gut microbiota in aquatic animals are largely unclear. This review discusses basic and current research advancements to fill research gaps and promote effective and healthy aquaculture production.
Collapse
Affiliation(s)
| | - Hary L. Razafindralambo
- ProBioLab, 5004 Namur, Belgium;
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Sustainable Management of Bio-Agressors & Microbial Technologies, Gembloux Agro-Bio Tech—Université de Liège, 5030 Gembloux, Belgium
| | | | - Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Long Xuyen City 90000, Vietnam;
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen 361021, China;
| |
Collapse
|
3
|
Effects of Five Prebiotics on Growth, Antioxidant Capacity, Non-Specific Immunity, Stress Resistance, and Disease Resistance of Juvenile Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Animals (Basel) 2023; 13:ani13040754. [PMID: 36830542 PMCID: PMC9952795 DOI: 10.3390/ani13040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
To explore the short-term health benefits of five prebiotics on hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), six experimental groups fed with different diets (basal diet, diet control (CON); basal diet + 0.2% fructooligosaccharide (FOS), diet FOS; basal diet + 0.5% chitosan, diet chitosan (CTS); basal diet + 0.2% mannan-oligosaccharide (MOS), diet MOS; basal diet + 0.1% β-glucan (GLU), Diet GLU; basal diet + 0.05% xylooligosaccharide (XOS), diet XOS) were set up, and a 4-week feeding trial was conducted. MOS and XOS significantly improved the growth of hybrid grouper compared to the CON group (p < 0.05). Antioxidant enzyme assay showed that the activity of glutathione peroxidase (GPx) was significantly enhanced in the MOS group, and the content of malondialdehyde (MDA) in the XOS group was significantly lower than in the CON group (p < 0.05). The catalase (CAT) activities were significantly enhanced in all prebiotic-supplemented groups compared with the CON group (p < 0.05). Non-specific immunity assay showed that the activities of alkaline phosphatase (AKP) and lysozyme (LZM) were significantly increased in all prebiotic-supplemented groups compared with the CON group (p < 0.05). The total protein content in the XOS group was significantly increased (p < 0.05), and the albumin (ALB) activity in the MOS group was more significantly increased than that in the CON group. Histological examination of the intestine revealed that muscle thickness was significantly increased in all prebiotic-supplemented groups compared to the CON group (p < 0.05). Villi length, villi width, muscle thickness all increased significantly in the MOS group (p < 0.05). In addition, the crowding stress and ammonia nitrogen stress experiments revealed that the survival rates of the MOS and XOS groups after stresses were significantly higher than those of the CON group (p < 0.05). Though MOS and XOS exhibited similar anti-stress effects, the antioxidant and non-specific immunity parameters they regulated were not the same, indicating that the specific mechanisms of MOS and XOS's anti-stress effects were probably different. After being challenged with Vibrio harvey, MOS and GLU groups showed significantly higher post-challenge survival rates than the CON group (p < 0.05). These findings indicated that among the five prebiotics, MOS and XOS showed the best overall short-term beneficial effects and could be considered promising short-term feed additives to improve the stress resistance of juvenile hybrid grouper.
Collapse
|
4
|
Liu J, Wang B, Lai Q, Lu Y, Li L, Li Y, Liu S. Boosted growth performance, immunity, antioxidant capacity and disease resistance of crucian carp (Carassius auratus) by single or in combination dietary Bacillus subtilis and xylo-oligosaccharides. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109296. [PMID: 35189356 DOI: 10.1016/j.cbpc.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
In this study, a total of 420 healthy crucian carp (9.77 ± 0.04 g) were randomly divided into CK, B·S, XOS and B·S + XOS group, and cultured for 8 weeks. Results showed that the dietary Bacillus subtilis (B. subtilis) and xylo-oligosaccharides (XOS) can significantly increased the final weight, weight gain, specific growth rate, feed efficiency, protein efficiency and survival rate of crucian carp. Dietary B. subtilis and XOS can significantly increased the activities of catalase, glutathione, superoxide dismutase and total antioxidant capacity, significantly decreased the contents of malondialdehyde, and significantly increased the activities of alkaline phosphatase, acid phosphatase, lysozyme and the contents of complement component 3,4 and immunoglobulin M in crucian carp serum. In addition, compared with CK group, the expression levels of TGF-β and IL-10 in B·S, XOS and B·S + XOS group were significantly increased, and the expression levels of TNF-α, HSP90, IL-1β, TLR4 and MyD88 were significantly decreased. Supplementation of B. subtilis and XOS can also improve the intestinal tissue morphology of crucian carp. After injection of 1 × 107 CFU/mL Aeromonas hydrophila (A. hydrophila), compared with CK group, the survival rates of the B·S group, the XOS group and the B·S + XOS group were increased by 13.98%, 10.56% and 30.74%, respectively. These results show that dietary B. subtilis and XOS can significantly improve the growth performance, antioxidant capacity, immunity and resistance to A. hydrophila of crucian carp, and the combined effect is better than that of single addition.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Bo Wang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Yuting Lu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
5
|
Abasubong KP, Li XF, Adjoumani JJY, Jiang GZ, Desouky HE, Liu WB. Effects of dietary xylooligosaccharide prebiotic supplementation on growth, antioxidant and intestinal immune-related genes expression in common carp Cyprinus carpio fed a high-fat diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:403-418. [PMID: 34957599 DOI: 10.1111/jpn.13669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022]
Abstract
This study investigated the effects of xylooligosaccharide (XOS) supplementation on growth, intestinal enzyme, antioxidant and immune-related genes in common carp Cyprinus carpio fed a high-fat diet (HFD). One hundred and ninety two fish with an initial weight of 19.61 ± 0.96 g were allocated into 24 tanks (eight fish per tank in four replicate) and were fed the control diet, HFD, HFD with 0.5%, 1%, 2% and 3% XOS supplementation. From the result, fish offered HFD with 1% XOS supplementation significantly obtained a higher body mass index and feed efficiency ratio, whereas condition factor was higher in fish fed HFD supplemented with 2% XOS but no difference was attributed to other supplemented group compared to control group. Also, fish fed HFD supplemented with 1%-2% XOS significantly improved protease, lipase, creatine kinase and sodium/potassium ATPase activities compared to other groups. Fish offered HFD were significantly lower in superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX), myeloperoxidase, acid phosphatase, lysozyme activities and immunoglobulin content, but the opposite result was found for aspartate transaminase, alanine transaminase activities, malondialdehyde, protein carbonyl and cortisol content as compared with the control. However, this effect was reversed with HFD supplemented with XOS. Also, interleukin 1β, interleukin 8, tumour necrosis factors, interferons, caspase-3 and caspase-9 in the intestine were all up-regulated in the HFD group, while the reverse pattern was found in SOD, GPX, lysozyme-C, complement 3 and mucin 5b (muc5b), than the control group. These effects were all enhanced by feeding the XOS diet, especially those fed 1%-3% supplementation. In conclusion, XOS inclusion can improve the growth, digestive enzymes, antioxidants and immune response of common carp fed HFD.
Collapse
Affiliation(s)
| | - Xiang-Fei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jean-Jacques Y Adjoumani
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guang-Zhen Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hesham E Desouky
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damanhour University, Damanhour, Beheria, Egypt
| | - Wen-Bin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Van Doan H, Lumsangkul C, Hoseinifar SH, Tongsiri S, Chitmanat C, Musthafa MS, El-Haroun E, Ringo E. Modulation of growth, innate immunity, and disease resistance of Nile tilapia (Oreochromis niloticus) culture under biofloc system by supplementing pineapple peel powder and Lactobacillus plantarum. FISH & SHELLFISH IMMUNOLOGY 2021; 115:212-220. [PMID: 34146675 DOI: 10.1016/j.fsi.2021.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Eight weeks feeding experiment was managed to evaluate the impacts of dietary addition of pineapple peel powder (PAPP) and Lactobacillus plantarum CR1T5 (LP) individual or mixed on growth performance, skin mucus and serum immunities, as well as disease resistance of Nile tilapia. Fish (average weight 20.91 ± 0.11 g) were fed four diets: Diet 1 (0 g kg-1 PAPP and 0 CFU g-1 L. plantarum, Diet 2 (10 g kg-1 PAPP), Diet 3 (108 CFU g-1L. plantarum), and Diet 4 (10 g kg-1 PAPP + 108 CFU g-1L. plantarum). Serum and mucus immune responses, as well as growth rate, were assessed every 4 weeks. Ten fish were chosen for the challenge test with Streptococcus agalactiae after 8 weeks post-feeding. The findings showed that PAPP and/or LP diets increased (P ≤ 0.05) growth performance, skin mucus, and serum immune responses. The best data were obtained in fish fed a mixture of PAPP and LP. Nevertheless, no variation (P > 0.05) was recorded between groups fed PAPP or LP. The relative survival percentage (RSP, %) in Diet 2, Diet 3, and Diet 4 was 46.15%, 50.0%, and 73.08%. Fish fed mixture of PAPP + LP recorded the best (P < 0.05) survival rate versus other treatments. The current findings recommended using a mixture of PAPP and LP as promising functional additives for aquaculture practice.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources. Gorgan, Iran
| | - Sudaporn Tongsiri
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Chanagun Chitmanat
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Mohamed Saiyad Musthafa
- P.G. & Research Department of Zoology, Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), The New College (Autonomous), Affiliated to University of Madras, Chennai, 600 014, Tamilnadu, India
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Cairo University, Egypt
| | - Einar Ringo
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|