1
|
Cediel-Devia DC, Schaitz LH, da Silva FF, Santos LV, da Silva APG, Santos MDC, Dueñez WYS, Melgar ORA, Paixão TR, Silva JWD, de Araújo TLAC, de Lima Júnior DM, Silva RR. Performance, Carcass Traits, and Meat Fatty Acid Profile of Post-Weaning and Finishing Zebu Steers on Tropical Pasture with Three Low-Intake Supplementation Strategies. Animals (Basel) 2024; 14:2486. [PMID: 39272271 PMCID: PMC11393885 DOI: 10.3390/ani14172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 09/15/2024] Open
Abstract
The study aimed to evaluate the effects of three supplementation strategies on intake, apparent digestibility, feeding behavior, performance, carcass traits, proximate composition, and the fatty acid profile of meat from steers on tropical pasture during the post-weaning and finishing stages. The experiment involved 33 1/2 Holstein × 1/2 castrated Zebu steers weighing 335 ± 42.90 kg, aged 22 ± 2 m. The animals were managed on Urochloa brizantha cv. Marandu using an intermittent grazing system with continuous stocking and variable stocking rates for 310 days. The supplementation strategies were as follows: MS/US (mineral salt/urea supplementation): mineral salt in the rainy season and mineral salt with urea in the dry season; US/PS1 (urea supplementation/protein supplementation): mineral salt with urea in the rainy season and protein supplement at 1 g/kg body weight (BW) in the dry season; and PS1/PS2 (protein supplementation 1/protein supplementation 2): protein supplement at 1 g/kg BW in the rainy season and 2 g/kg BW in the dry season. The dry matter intake did not differ significantly (p > 0.05) between strategies. However, the post-weaning PS1/PS2 strategy resulted in higher (p < 0.05) crude protein intake. The final body weight did not differ (p > 0.05) between the strategies, but the average daily gain in post-weaning and finishing was higher (p < 0.05) for MS/US (restricted) animals. Carcass weight, subcutaneous fat thickness, and lipid content in meat were significantly higher (p < 0.05) for steers in the PS1/PS2 group. Steers finished on MS/US produced meat with a higher content of polyunsaturated fatty acids and ω-3 fatty acids (p < 0.05). Concentrate supplementation at 1 g/kg BW during the rainy season and 2 g/kg BW during the dry season is recommended for post-weaning and finishing steers on tropical pasture.
Collapse
Affiliation(s)
- Diana Carolina Cediel-Devia
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Luís Henrique Schaitz
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Fabiano Ferreira da Silva
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Laize Vieira Santos
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Ana Paula Gomes da Silva
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Marceliana da Conceição Santos
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Wbeimar Yamit Sanchez Dueñez
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Osman Ronaldo Aguilar Melgar
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Tarcísio Ribeiro Paixão
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - João Wilian Dias Silva
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| | - Thiago Luís Alves Campos de Araújo
- Department of Animal Science, Federal University of the Semi-Arid Region, Francisco Mota Street, Costa e Silva, Mossoró 59625-900, RN, Brazil
| | - Dorgival Morais de Lima Júnior
- Department of Animal Science, Federal University of the Semi-Arid Region, Francisco Mota Street, Costa e Silva, Mossoró 59625-900, RN, Brazil
| | - Robério Rodrigues Silva
- Department of Rural and Animal Technology, Southwest Bahia State University, Primavera Square, Itapetinga 45700-000, BA, Brazil
| |
Collapse
|
2
|
Zhang H, Cone JW, Kies AK, Dijkstra J, Hendriks WH, van der Wielen N. In vitro fermentation potential of gut endogenous protein losses of growing pigs. J Anim Sci 2024; 102:skae181. [PMID: 38995038 PMCID: PMC11253212 DOI: 10.1093/jas/skae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
Fermentation of dietary and endogenous protein in the hindgut is generally considered detrimental to the health of pigs. We investigated the in vitro fermentation potential of porcine endogenous protein in ileal digesta and colonic mucus, using a N-free buffer with an excess of fermentable carbohydrates. Urea, whey protein isolate (WPI, positive control), WPI hydrolysate (WPIH), and combinations of the latter two were used to validate the assay. A new biphasic model, including a linear end simulation, fitted to the gas production data over a 48-h period identified the time point when substrate fermentation ended. A higher degree of hydrolysis of WPI resulted in a higher maximum gas production rate (Rmax, P < 0.01). Differences in Rmax and the time required to reach Rmax were observed among ileal digesta samples, with Rmax increasing with the insoluble protein content, and the highest Rmax occurring with colonic mucus samples (P < 0.05). The endogenous proteins entering the large intestine of pigs can ferment more rapidly compared to highly soluble and digestible protein sources, with Rmax positively correlated with decreasing solubility of endogenous nitrogenous components.
Collapse
Affiliation(s)
- Hanlu Zhang
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - John W Cone
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Jan Dijkstra
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Wouter H Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
- Department of Agrotechnology and Food Sciences, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
In Vitro Rumen Fermentation and Post-Ruminal Digestibility of Sorghum-Soybean Forage as Affected by Ensiling Length, Storage Temperature, and Its Interactions with Crude Protein Levels. Animals (Basel) 2022; 12:ani12233400. [PMID: 36496920 PMCID: PMC9737225 DOI: 10.3390/ani12233400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The study aimed to evaluate the effects of ensiling length, storage temperature, and its interaction with crude protein (CP) levels in sorghum−soybean forage mixtures on in vitro rumen fermentation and post-ruminal digestibility of nutrients. The dietary treatments consisted of fresh forages (d 0) and silages of sorghum and soybean stored indoors or outdoors for 75 and 180 d with additional ingredients to make two dietary CP levels, 90 and 130 g/kg dry matter (DM) and a forage-to-concentrate ratio of 80 to 20. An in vitro procedure was conducted using the ANKOM RF technique to study rumen fermentation. The dietary treatments were incubated in duplicate for 8 and 24 h in three runs. After each incubation time, in vitro rumen fermentation parameters were measured, and the protozoa population was counted using a microscope. Post-ruminal digestibility was determined using the pepsin and pancreatic solubility procedure. Cumulative gas production (GP) increased quadratically with ensiling length (8 h, p < 0.01; 24 h, p = 0.02), and the GP differed between CP levels at both incubation times (p < 0.01). However, total short-chain fatty acid (SCFA) concentrations in rumen inoculum increased quadratically with ensiling length (p < 0.01; for both incubation times), and interaction between ensiling length and CP levels was observed in proportions of acetate and propionate after 24 h of incubation (p < 0.01; for both incubation times). Similarly, an interaction between ensiling length and CP levels was found in the proportion of valerate after 24 h of incubation (p < 0.01). There was a quadratic response to ensiling length in the NH4−N concentration after 8 h (p < 0.01) and 24 h (p < 0.05), and the CP level also differed (p < 0.01) at both incubation times. The ciliate protozoa count after 24 h was higher in low CP diets than in high CP diets (p = 0.04). The amount of CP in the undegraded substrate at both incubation times differed between CP levels (p < 0.01; for both incubation times). An interaction effect between ensiling length and storage temperature after 8 h (p = 0.02) and 24 h (p < 0.01) was observed for intestinal CP digestibility. The effect of CP levels on intestinal CP digestibility differed after 8 h (p < 0.01) and 24 h (p < 0.01). In conclusion, increasing ensiling length beyond 75 d reduced CP digestibility, and additional CP inclusion did not ameliorate this.
Collapse
|
4
|
Chen P, Li Y, Shen Y, Cao Y, Li Q, Wang M, Liu M, Wang Z, Huo Z, Ren S, Gao Y, Li J. Effect of Dietary Rumen-Degradable Starch to Rumen-Degradable Protein Ratio on In Vitro Rumen Fermentation Characteristics and Microbial Protein Synthesis. Animals (Basel) 2022; 12:ani12192633. [PMID: 36230374 PMCID: PMC9559263 DOI: 10.3390/ani12192633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate the effects of dietary rumen-degradable starch (RDS, g/kg of DM) to rumen-degradable protein (RDP, g/kg of DM) ratios (SPR) on in vitro rumen fermentation characteristics and microbial protein synthesis (MCPS). Treatments were eight diets with SPR of 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6 and were formulated to be isoenergetic, isonitrogenous, and isostarch. Substrates were anaerobically incubated in sealed culture vials (100 mL) for 6, 24 or 48 h. Three incubation runs were conducted within two consecutive weeks. With the increase of the dietary SPR, the gas production (GP), in vitro dry matter disappearance (IVDMD) and concentration of MCPS and total volatile fatty acids (TVFA) linearly increased after 6 h of incubation (p ≤ 0.01), whereas they quadratically increased and peaked at the SPR of 2.3 after 24 and 48 h of incubation (p < 0.05). In response to dietary SPR increasing, the in vitro neutral detergent fiber disappearance (IVNDFD) quadratically increased (p < 0.01), and the ammonia nitrogen (NH3-N) concentration linearly decreased (p < 0.01) after 6, 24 and 48 h of incubation. Based on the presented results, an SPR of 2.3 is recommended for formulating a diet due to its greatest IVDMD, IVNDFD, GP, TVFA and MCPS. However, as the results obtained are strictly dependent on the in vitro conditions, further in vivo studies are needed to verify our findings.
Collapse
Affiliation(s)
- Panliang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Yan Li
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Meimei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Mingchao Liu
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zhiyuan Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Zihan Huo
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Shuai Ren
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071001, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang 050221, China
- Correspondence: (Y.G.); (J.L.)
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071001, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang 050221, China
- Correspondence: (Y.G.); (J.L.)
| |
Collapse
|