1
|
He Z, Liu S, Wen X, Cao S, Zhan X, Hou L, Li Y, Chen S, Zheng H, Deng D, Gao K, Yang X, Jiang Z, Wang L. Effect of mixed meal replacement of soybean meal on growth performance, nutrient apparent digestibility, and gut microbiota of finishing pigs. Front Vet Sci 2024; 11:1321486. [PMID: 38362303 PMCID: PMC10868527 DOI: 10.3389/fvets.2024.1321486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction This study was carried out to investigate the effects of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacement soybean meal on growth performance, nutrient apparent digestibility, serum inflammatory factors and immunoglobulins, serum biochemical parameters, intestinal permeability, short-chain fatty acid content, and gut microbiota of finishing pigs. Methods A total of 54 pigs with an average initial weight of 97.60 ± 0.30 kg were selected and randomly divided into 3 groups according to their initial weight, with 6 replicates in each group and 3 pigs in each replicate. The trial period was 26 days. The groups were as follows: control group (CON), fed corn-soybean meal type basal diet; Corn-soybean-mixed meal group (CSM), fed corn-soybean meal-mixed meal diet with a ratio of rapeseed meal, cotton meal, and sunflower meal of 1:1:1 to replace 9.06% soybean meal in the basal diet; Corn-mixed meal group (CMM), fed a corn-mixed meal diet with a ratio of Rapeseed meal, Cotton meal and Sunflower meal of 1:1:1 to replace soybean meal in the basal diet completely. The crude protein level of the three diets was maintained at 12.5%. Results Our findings revealed no significant impact of replacing soybean meal with the mixed meal (rapeseed meal, cotton meal, and sunflower meal) on the ADG (Average daily gain), ADFI (Average daily feed intake), and F/G (Feed gain ratio) (P > 0.05), or crude protein, crude fat, and gross energy (P > 0.05) in the diet of finishing pigs. Compared with the CON group, the serum interleukin 6 (IL-6) and interleukin 10 (IL-10) concentrations were significantly decreased in the CMM group (P < 0.05). However, there is no significant effect of the mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-alpha (TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations (P > 0.05). Concordantly, there is no significant effect of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum antioxidant capacity, such as total antioxidant capacity (T-AOC), catalase (CAT), and malondialdehyde (MDA) levels of finishing pigs. Moreover, compared with the CON group, serum low-density lipoprotein (LDL-C) levels were significantly lower in the CSM group (P < 0.05) and their total bilirubin (TBIL) levels were significantly lower in the CMM group (P < 0.05). There is not a significant effect on serum D-lactate and diamine oxidase (DAO) concentrations (P > 0.05). The next section of the survey showed that the replacement of soybean meal with a mixed meal (rapeseed meal, cotton meal, and sunflower meal) in the diet did not significantly influence the acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric acid in the colon contents (P > 0.05). Furthermore, compared with the CON group, the CMM group diet significantly increased the abundance of Actinobacteria at the phylum level (P < 0.05), U_Actinobacteria at the class level (P < 0.05), and U_Bacteria at the class level (P < 0.05). The result also showed that the CMM group significantly reduced the abundance of Oscillospirales at the order level (P < 0.05) and Streptococcaceae at the family level (P < 0.05) compared with the CON group. The Spearman correlation analysis depicted a statistically significant positive correlation identified at the class level between the relative abundance of U_Bacteria and the serum T. BILI concentrations (P < 0.05). Moreover, a significant negative correlation was detected at the order level between the relative abundance of Oscillospirales and the levels of acetic and propionic acids in the colonic contents (P < 0.05). Additionally, there was a significant positive correlation between the serum concentrations of IL-6 and IL-10 and the relative abundance of the family Streptococcaceae (P < 0.05). Discussion This study demonstrated that the mixed meal (rapeseed meal, cotton meal, and sunflower meal) as a substitute for soybean meal in the diet had no significant negative effects on the growth performance, nutrient apparent digestibility, serum immunoglobulins, serum antioxidant capacity, intestinal permeability, short-chain fatty acid content, and diversity of gut microbiota of finishing pigs. These results can help develop further mixed meals (rapeseed meal, cotton meal, and sunflower meal) as a functional alternative feed ingredient for soybean meals in pig diets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
2
|
Kovanda L, Rengman S, Tawde S, Pos J, Park S, Sun S, Park J, Kim K, Li X, Liu Y. Dietary glycerides of valerate ameliorate diarrhea and impact intestinal physiology and serum biomarkers in weaned piglets infected with enterotoxigenic Escherichia coli F18. J Anim Sci 2024; 102:skae322. [PMID: 39432563 PMCID: PMC11537800 DOI: 10.1093/jas/skae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
In the commercial swine farm setting, the postweaning period is a critical window during which piglets are highly susceptible to infection and enterotoxigenic E. coli (ETEC)-associated diarrhea. Short-chain fatty acids and their glycerides are compounds that may influence intestinal health; however, valerate is one that has not been well-characterized for its role as a dietary supplement. Therefore, the major objective of this experiment was to investigate two forms of valerate glycerides on diarrhea, intestinal physiology, and systemic immunity of weaned pigs experimentally infected with ETEC F18. Dietary treatments included a control diet and three additional diets supplemented with 0.075% monovalerin, 0.1% monovalerin, or 0.1% trivalerin, respectively. Piglets were weaned (21 d to 24 d of age), individually housed, and experimental diets were fed through the 28-d trial period. After a 7-d period, all piglets were inoculated on three consecutive days with 1010 CFU ETEC F18/3 mL. Growth performance was monitored throughout the trial, and daily diarrhea scores were recorded. Rectal swabs were collected for bacterial culture to confirm the presence or absence of β-hemolytic coliforms throughout the trial. Serum samples were collected and analyzed for inflammatory biomarkers on days 0, 3, 6, and 21 postinoculation (PI) and untargeted metabolomics on day 6 PI. Intestinal mucosa and tissue sections were harvested from pigs sacrificed on day 7 PI for gene expression and histology analysis. All data, except for frequency of diarrhea and metabolomics, were analyzed by ANOVA using the PROC MIXED of SAS. Dietary trivalerin reduced (P < 0.05) the frequency of severe diarrhea over the entire trial period and the frequency of β-hemolytic coliforms on day 7 PI compared with the control. The intestinal villus height on day 7 PI in jejunum tissue was increased (P < 0.05) in pigs fed trivalerin. The mRNA expression of TNF-α was decreased (P < 0.05) in the trivalerin group, while that of ZO1 was increased (P < 0.05) compared with control. Throughout the trial, serum TNF-α was reduced in pigs fed trivalerin compared with control. Serum metabolites, adenosine, inosine, and shikimic acid were reduced (P < 0.05) on day 6 PI in all treatment groups compared with control. In conclusion, the present results indicate supplementing dietary valerate glycerides exhibited beneficial impacts on diarrhea, inflammation, and intestinal gene expression of piglets during the postweaning period.
Collapse
Affiliation(s)
- Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Sofia Rengman
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Snehal Tawde
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Jeroen Pos
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Sangwoo Park
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Shuhan Sun
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Jungjae Park
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kwangwook Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Althnaibat RM, Bruce HL, Wu J, Gänzle MG. Bioactive peptides in hydrolysates of bovine and camel milk proteins: A review of studies on peptides that reduce blood pressure, improve glucose homeostasis, and inhibit pathogen adhesion. Food Res Int 2024; 175:113748. [PMID: 38129050 DOI: 10.1016/j.foodres.2023.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The prevalence of diet-related chronic conditions including hypertension and cardiovascular disease, and diabetes mellitus has increased worldwide. Research regarding the use of food-derived bioactive peptides as an alternative strategy to mitigate chronic diseases is on the rise. Milk is recognized as one of the main dietary protein sources for health beneficial bioactive compounds. Hundreds of in vitro studies have suggested that milk-derived bioactive peptides offer multiple biological and physiological benefits, and some but not all were confirmed in vivo with animal models for hypertension, hyperglycemia, and pathogen adhesion. However, only a limited number of health benefits have been confirmed by randomized clinical trials. This review provides an overview of the current clinical studies that target hypertension, postprandial hyperglycemic, and adhesion of enteric pathogen with bioactive peptides derived from bovine and camel milk, with a focus on the factors affecting the efficacy of orally ingested products.
Collapse
Affiliation(s)
- Rami M Althnaibat
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada
| | - Heather L Bruce
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada
| | - Jianping Wu
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Qu Y, Park SH, Dallas DC. The Role of Bovine Kappa-Casein Glycomacropeptide in Modulating the Microbiome and Inflammatory Responses of Irritable Bowel Syndrome. Nutrients 2023; 15:3991. [PMID: 37764775 PMCID: PMC10538225 DOI: 10.3390/nu15183991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder marked by chronic abdominal pain, bloating, and irregular bowel habits. Effective treatments are still actively sought. Kappa-casein glycomacropeptide (GMP), a milk-derived peptide, holds promise because it can modulate the gut microbiome, immune responses, gut motility, and barrier functions, as well as binding toxins. These properties align with the recognized pathophysiological aspects of IBS, including gut microbiota imbalances, immune system dysregulation, and altered gut barrier functions. This review delves into GMP's role in regulating the gut microbiome, accentuating its influence on bacterial populations and its potential to promote beneficial bacteria while inhibiting pathogenic varieties. It further investigates the gut microbial shifts observed in IBS patients and contemplates GMP's potential for restoring microbial equilibrium and overall gut health. The anti-inflammatory attributes of GMP, especially its impact on vital inflammatory markers and capacity to temper the low-grade inflammation present in IBS are also discussed. In addition, this review delves into current research on GMP's effects on gut motility and barrier integrity and examines the changes in gut motility and barrier function observed in IBS sufferers. The overarching goal is to assess the potential clinical utility of GMP in IBS management.
Collapse
Affiliation(s)
- Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Dahmer PL, DeRouchey JM, Gebhardt JT, Paulk CB, Jones CK. Summary of methodology used in enterotoxigenic Escherichia coli (ETEC) challenge experiments in weanling pigs and quantitative assessment of observed variability. Transl Anim Sci 2023; 7:txad083. [PMID: 37711356 PMCID: PMC10499306 DOI: 10.1093/tas/txad083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 09/16/2023] Open
Abstract
Postweaning diarrhea in pigs is often caused by the F4 or F18 strains of enterotoxigenic Escherichia coli (ETEC). To evaluate interventions for ETEC, experimental infection via a challenge model is critical. Others have reviewed ETEC challenge studies, but there is a lack of explanation for the variability in responses observed. Our objective was to quantitatively summarize the responses and variability among ETEC challenge studies and develop a tool for sample size calculation. The most widely evaluated response criteria across ETEC challenge studies consist of growth performance, fecal consistency, immunoglobulins, pro-inflammatory cytokines, and small intestinal morphology. However, there is variation in the responses seen following ETEC infection as well as the variability within each response criteria. Contributing factors include the type of ETEC studied, dose and timing of inoculation, and the number of replications. Generally, a reduction in average daily gain and average daily feed intake are seen following ETEC challenge as well as a rapid increase in diarrhea. The magnitude of response in growth performance varies, and methodologies used to characterize fecal consistency are not standardized. Likewise, fecal bacterial shedding is a common indicator of ETEC infection, but the responses seen across the literature are not consistent due to differences in bacterial enumeration procedures. Emphasis should also be placed on the piglet's immune response to ETEC, which is commonly assessed by quantifying levels of immunoglobulins and pro-inflammatory cytokines. Again, there is variability in these responses across published work due to differences in the timing of sample collection, dose of ETEC pigs are challenged with, and laboratory practices. Small intestinal morphology is drastically altered following infection with ETEC and appears to be a less variable response criterion to evaluate. For each of these outcome variables, we have provided quantitative estimates of the responses seen across the literature as well as the variability within them. While there is a large degree of variability across ETEC challenge experiments, we have provided a quantitative summary of these studies and a Microsoft Excel-based tool was created to calculate sample sizes for future studies that can aid researchers in designing future work.
Collapse
Affiliation(s)
- Payton L Dahmer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - Chad B Paulk
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
6
|
Castelo PG, Rodrigues LA, Gabardo MDP, Guedes RMC, Moreno AM, Coura FM, Heinemann MB, Rosa BO, Brustolini APL, Araújo ICS, Fontes DDO. A dietary spray-dried plasma feeding programme improves growth performance and reduces faecal bacterial shedding of nursery pigs challenged with enterotoxigenic Escherichia coli K88. J Anim Physiol Anim Nutr (Berl) 2023; 107:581-588. [PMID: 35934921 DOI: 10.1111/jpn.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to assess the effects of different spray-dried plasma (SDP) feeding programmes to pigs on performance, intestinal histomorphology and faecal bacterial shedding after an Escherichia coli K88 challenge. A total of 96 piglets (5.77 ± 0.01 kg) were weaned at 21 days of age (Day 0) and challenged with 3 ml of 1 × 1010 CFU of E. coli K88 in total 3.0 × 1010 CFU/animal on Days 0, 2 and 4. Pigs were fed nursery diets containing 0.0%, 3.0%, 6.0% or 9.0% SDP from weaning to 35 days of age; 0.0%, 1.5%, 3.0% or 4.5% SDP from 36 to 49 days; and the same control diet (without SDP), for the last 10 days of the experiment (50-59 days of age). Performance was measured from 35 to 59 days of age and faecal bacterial shedding and intestinal histomorphometry were evaluated at Days 28 and 49 of age respectively. From 21 to 35 days of age, there was a linear effect for body weight (BW) and average daily gain (ADG), a trend of linear effect for average daily feed intake (ADFI) and a quadratic effect for feed:gain ratio (FG). From 21 to 49 days, the 9.0:4.5% and 6.0:3.0% SDP feeding programmes improved BW, ADG and FG when compared to the other treatments. At 59 days of age, BW and ADG were increased by the two highest SDP feeding programmes. The 9.0:4.5% SDP feeding programme increased ADFI from 21 to 59 days of age, with 6.0:3.0% being intermediate and the other two treatments being lowest. The CFU counts of E. coli/g of faeces decreased linearly with increasing addition of SDP. These results indicate that an extended inclusion of increased SDP levels in post-weaning diets can improve growth potential and decrease bacterial shedding induced by E. coli K88.
Collapse
Affiliation(s)
- Pedro G Castelo
- Department of Animal Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas A Rodrigues
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada.,Prairie Swine Centre, Inc., Saskatoon, Canada
| | - Michele de P Gabardo
- Department of Veterinary Clinics and Surgery, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Roberto M Carvalho Guedes
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, Butantã, Brazil
| | | | | | | | - Bruno O Rosa
- Department of Animal Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana P L Brustolini
- Department of Animal Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Itallo C S Araújo
- Department of Animal Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dalton de O Fontes
- Department of Animal Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Althnaibat RM, Koch M, Bruce HL, Wefers D, Gänzle MG. Glycomacropeptide from camel milk inhibits the adhesion of enterotoxigenic Escherichia coli K88 to porcine cells. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS One 2022; 17:e0266524. [PMID: 35511825 PMCID: PMC9070874 DOI: 10.1371/journal.pone.0266524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
The intense nature of pig production has increased the animals’ exposure to stressful conditions, which may be detrimental to their welfare and productivity. Some of the most common sources of stress in pigs are extreme thermal conditions (thermal stress), density and mixing during housing (social stress), or exposure to pathogens and other microorganisms that may challenge their immune system (immune-related stress). The stress response can be monitored based on the animals’ coping mechanisms, as a result of specific environmental, social, and health conditions. These animal-based indicators may support decision making to maintain animal welfare and productivity. The present study aimed to systematically review animal-based indicators of social, thermal, and immune-related stresses in farmed pigs, and the methods used to monitor them. Peer-reviewed scientific literature related to pig production was collected using three online search engines: ScienceDirect, Scopus, and PubMed. The manuscripts selected were grouped based on the indicators measured during the study. According to our results, body temperature measured with a rectal thermometer was the most commonly utilized method for the evaluation of thermal stress in pigs (87.62%), as described in 144 studies. Of the 197 studies that evaluated social stress, aggressive behavior was the most frequently-used indicator (81.81%). Of the 535 publications examined regarding immune-related stress, cytokine concentration in blood samples was the most widely used indicator (80.1%). Information about the methods used to measure animal-based indicators is discussed in terms of validity, reliability, and feasibility. Additionally, the introduction and wide spreading of alternative, less invasive methods with which to measure animal-based indicators, such as cortisol in saliva, skin temperature and respiratory rate via infrared thermography, and various animal welfare threats via vocalization analysis are highlighted. The information reviewed was used to discuss the feasible and most reliable methods with which to monitor the impact of relevant stressors commonly presented by intense production systems on the welfare of farmed pigs.
Collapse
|
9
|
Zhao M, He H, Ma A, Hou T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide covalent conjugates: a review. Crit Rev Food Sci Nutr 2022; 63:5985-6004. [PMID: 35089848 DOI: 10.1080/10408398.2022.2026872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proteins/peptides and saccharides are two kinds of bioactive substances in nature. Recently, increasing attention has been paid in understanding and utilizing covalent interactions between proteins/peptides and saccharides. The products obtained through covalent conjugation of proteins/peptides to saccharides are shown to have enhanced functional attributes, such as better gelling property, thermostability, and water-holding capacity. Additionally, food-derived protein/peptide-saccharide covalent conjugates (PSCCs) also have biological activities, such as antibacterial, antidiabetic, anti-osteoporosis, anti-inflammatory, anti-cancer, immune regulatory, and other activities that are widely used in the functional food industry. Moreover, PSCCs can be used as packaging or delivery materials to improve the bioavailability of bioactive substances, which expands the development of food-derived protein and saccharide resources. Thus, this review was aimed to first summarize the current status of sources, classification structures of natural PSCCs. Second, the methods of chemical synthesis, reaction conditions, characterization and reagent formulations that improve the desired functional characteristics of food-derived PSCCs were introduced. Third, functional properties such as emulsion, edible films/coatings, and delivery of active substance, bio-activities such as antioxidant, anti-osteoporosis, antidiabetic, antimicrobial of food-derived PSCCs were extensively discussed.
Collapse
Affiliation(s)
- Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
10
|
The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Morrin ST, Buck RH, Farrow M, Hickey RM. Milk-derived anti-infectives and their potential to combat bacterial and viral infection. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Arbizu S, Chew B, Mertens-Talcott SU, Noratto G. Commercial whey products promote intestinal barrier function with glycomacropeptide enhanced activity in downregulating bacterial endotoxin lipopolysaccharides (LPS)-induced inflammation in vitro. Food Funct 2021; 11:5842-5852. [PMID: 32633745 DOI: 10.1039/d0fo00487a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cheese whey contains bioactive compounds which have shown multiple health-promoting benefits. This study aimed to assess the commercial whey products (CWP) whey protein isolate (WPI), galacto-oligosaccharide-whey protein concentrate (GOS-W) and glycomacropeptide (GMP) for their potential to improve intestinal health in vitro using HT29-MTX intestinal goblet and Caco-2 epithelial cells. Results from HT29-MTX culture showed that WPI mitigated reactive oxygen species (ROS) production at a higher extent compared to GOS-W or GMP. However, GMP downregulated the lipopolysaccharide (LPS)-induced TLR-4 inflammatory pathway with the highest potency compared to the other CWP. Biomarkers of epithelial integrity assessed on both cell lines showed tight junction proteins claudin-1, claudin-3, occludin (OCC), and zonula occludens-1 (ZO-1) upregulation by GMP in HT29-MTX (1.33-1.93-fold of control) and in Caco-2 cells (1.56-2.09-fold of control). All CWP increased transepithelial electrical resistance (TEER) in TNF-α challenged Caco-2/HT29-MTX co-culture monolayer (p < 0.05), but only GMP was similar to the positive control TGF-β1, known for its role in promoting epithelial barrier function. The TNF-α-induced co-culture monolayer permeability was prevented at similar levels by all CWP (p < 0.05). In conclusion, CWP may be used as functional food ingredients to protect against intestinal disorders with emphasis on the GMP enhanced anti-inflammatory and intestinal barrier function properties. Further in vivo studies are guaranteed to validate these findings.
Collapse
Affiliation(s)
- Shirley Arbizu
- Department of Food Science and Technology, Texas A&M University, College Station, TX, USA.
| | - Boon Chew
- Department of Food Science and Technology, Texas A&M University, College Station, TX, USA.
| | | | - Giuliana Noratto
- Department of Food Science and Technology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Wu Y, Zhang X, Tao S, Pi Y, Han D, Ye H, Feng C, Zhao J, Chen L, Wang J. Maternal supplementation with combined galactooligosaccharides and casein glycomacropeptides modulated microbial colonization and intestinal development of neonatal piglets. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Zhang W, Zhang S, Wang J, Shan A, Xu L. Changes in intestinal barrier functions and gut microbiota in rats exposed to zearalenone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111072. [PMID: 32758694 DOI: 10.1016/j.ecoenv.2020.111072] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that causes serious health problems in humans and animals. However, few studies have focused on the destruction of the intestinal barrier caused by ZEN. In this study, rats were exposed to different dosages of ZEN (0, 0.2, 1.0 and 5.0 mg/kg bw) by gavage for 4 weeks. The results showed that 1.0 and 5.0 mg/kg ZEN impaired gut morphology, induced the inflammatory response, reduced mucin expression, increased intestinal permeability, decreased the expression of TJ proteins and activated the RhoA/ROCK pathway. However, 0.2 mg/kg ZEN had no significant effect on intestinal barrier except for reducing the expression of some TJ proteins and mucins. Moreover, exposure to ZEN led to slight imbalance in microbiota. In conclusion, ZEN exposure resulted in intestinal barrier dysfunction by inducing intestinal microbiota dysbiosis, decreasing the expression of TJ proteins, activating the RhoA/ROCK pathway, and inducing the inflammatory response.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shihua Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jingjing Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Li Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Lasso Peptide Microcin J25 Effectively Enhances Gut Barrier Function and Modulates Inflammatory Response in an Enterotoxigenic Escherichia coli-Challenged Mouse Model. Int J Mol Sci 2020; 21:ijms21186500. [PMID: 32899529 PMCID: PMC7555725 DOI: 10.3390/ijms21186500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial resistance leads to severe public health and safety issues worldwide. Alternatives to antibiotics are currently needed. A promising lasso peptide, microcin J25 (MccJ25), is considered to be the best potential substitute for antibiotics to treat pathogen infection, including enterotoxigenic Escherichia coli (ETEC). This study evaluated the efficacy of MccJ25 in the prevention of ETEC infection. Forty-five female BALB/c mice of clean grade (aged seven weeks, approximately 16.15 g) were randomly divided into three experimental groups as follows: (i) control group (uninfected); (ii) ETEC infection group; (iii) MccJ25 + ETEC group. Fifteen mice per group in five cages, three mice/cage. MccJ25 conferred effective protection against ETEC-induced body weight loss, decrease in rectal temperature and increase in diarrhea scores in mice. Moreover, in ETEC-challenged mice model, MccJ25 significantly improved intestinal morphology, decreased intestinal histopathological scores and attenuated intestinal inflammation by decreasing proinflammatory cytokines and intestinal permeability, including reducing serum diamine oxidase and D-lactate levels. MccJ25 enhanced epithelial barrier function by increasing occludin expression in the colon and claudin-1 expression in the jejunum, ultimately improving intestinal health of host. MccJ25 was further found to alleviate gut inflammatory responses by decreasing inflammatory cytokine production and expression via the activation of the mitogen-activated protein kinase and nuclear factor κB signaling pathways. Taken together, the results indicated that MccJ25 protects against ETEC-induced intestinal injury and intestinal inflammatory responses, suggesting the potential application of MccJ25 as an excellent antimicrobial or anti-inflammation agent against pathogen infections.
Collapse
|
16
|
Choi J, Wang L, Liu S, Lu P, Zhao X, Liu H, Lahaye L, Santin E, Liu S, Nyachoti M, Yang C. Effects of a microencapsulated formula of organic acids and essential oils on nutrient absorption, immunity, gut barrier function, and abundance of enterotoxigenic Escherichia coli F4 in weaned piglets challenged with E. coli F4. J Anim Sci 2020; 98:skaa259. [PMID: 32780110 PMCID: PMC7526869 DOI: 10.1093/jas/skaa259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
The objective was to study the effects of microencapsulated organic acids (OA) and essential oils (EO) on growth performance, immune system, gut barrier function, nutrient digestion and absorption, and abundance of enterotoxigenic Escherichia coli F4 (ETEC F4) in the weaned piglets challenged with ETEC F4. Twenty-four ETEC F4 susceptible weaned piglets were randomly distributed to 4 treatments including (1) sham-challenged control (SSC; piglets fed a control diet and challenged with phosphate-buffered saline (PBS)); (2) challenged control (CC; piglets fed a control diet and challenged with ETEC F4); (3) antibiotic growth promoters (AGP; CC + 55 mg·kg-1 of Aureomycin); and (4) microencapsulated OA and EO [P(OA+EO); (CC + 2 g·kg-1 of microencapsulated OA and EO]. The ETEC F4 infection significantly induced diarrhea at 8, 28, 34, and 40 hr postinoculation (hpi) (P < 0.05) in the CC piglets. At 28 d postinoculation (dpi), piglets fed P(OA+EO) had a lower (P < 0.05) diarrhea score compared with those fed CC, but the P(OA+EO) piglets had a lower (P < 0.05) diarrhea score compared with those fed the AGP diets at 40 dpi. The ETEC F4 infection tended to increase in vivo gut permeability measured by the oral gavaging fluorescein isothiocyanate-dextran 70 kDa (FITC-D70) assay in the CC piglets compared with the SCC piglets (P = 0.09). The AGP piglets had higher FITC-D70 flux than P(OA+EO) piglets (P < 0.05). The ETEC F4 infection decreased mid-jejunal VH in the CC piglets compared with the SCC piglets (P < 0.05). The P(OA+EO) piglets had higher (P < 0.05) VH in the mid-jejunum than the CC piglets. The relative mRNA abundance of Na+-glucose cotransporter and B0AT1 was reduced (P < 0.05) by ETEC F4 inoculation when compared with the SCC piglets. The AGP piglets had a greater relative mRNA abundance of B0AT1 than the CC piglets (P < 0.05). The ETEC F4 inoculation increased the protein abundance of OCLN (P < 0.05), and the AGP piglets had the lowest relative protein abundance of OCLN among the challenged groups (P < 0.05). The supplementation of microencapsulated OA and EO enhanced intestinal morphology and showed anti-diarrhea effects in weaned piglets challenged with ETEC F4. Even if more future studies can be required for further validation, this study brings evidence that microencapsulated OA and EO combination can be useful within the tools to be implemented in strategies for alternatives to antibiotics in swine production.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Lucy Wang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Haoming Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Lei XJ, Kim IH. Evaluation of coated zinc oxide in young pigs challenged with enterotoxigenic Escherichia coli K88. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Metwally MM, Abdel-Fatt A, El-Beltagi HS, Ameen MA. Hepatoprotective Effect of Casein Glycomacropeptide as Compared to Pterostilbene and Curcumin. INTERNATIONAL JOURNAL OF DAIRY SCIENCE 2019; 15:10-21. [DOI: 10.3923/ijds.2020.10.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Wang H, Li P, Du T, Pu G, Fan L, Gao C, Niu P, Wu C, Zhou W, Huang R. Effects of Increasing Levels of Defatted Rice Bran on Intestinal Physical Barrier and Bacteria in Finishing Pigs. Animals (Basel) 2019; 9:ani9121039. [PMID: 31795068 PMCID: PMC6940934 DOI: 10.3390/ani9121039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/19/2023] Open
Abstract
The aims of this study were to assess the effects of increasing levels of DFRB as a replacement for corns on intestinal physical barrier function and bacteria of finishing pigs. A total of 35 castrated finishing pigs (age: 158.5 ± 2.0 d, initial body weight: 62.9 ± 0.8 kg) were randomly divided into five dietary treatments (seven replicates/treatment) for a 28-day experimental period, i.e., a control diet with basal diet, and four experimental diets in which maize was replaced by 7%, 14%, 21%, and 28% DFRB, respectively. The results showed that serum endotoxins concentration and diamine oxidase (DAO) activity were both increased (linear, p = 0.0004, 0.001, respectively) with DFRB level. However, compared with control group, serum endotoxins concentration and DAO activity were not different in pigs fed with 7% DFRB in the diet. There was a quadratic response in serum D-lactate concentration to the increased DFRB (quadratic, p = 0.021). In the cecum, thickness of the intestinal wall significantly increased with increasing levels of DFRB in the diets (linear, p = 0.033), while crypt depth/thickness of the intestinal wall ratio significantly decreased with increasing level of DFRB in the diets (linear, p = 0.043). In the jejunum, total bacteria, Escherichia coli, and Bifidobacterium all responded quadratically to increasing levels of DFRB in the diets (quadratic, p = 0.003, 0.001, 0.006, respectively). Additionally, there was no difference in Escherichia coli in pigs fed 0%, 7%, and 14% DFRB diets. In the colon, there were quadratic responses in C. perfringens to the increased DFRB (quadratic, p = 0.023). C. perfringens reduced as the DFRB concentration increased from 0% to 14% and then increased. When D-lactate, total bacteria, Escherichia coli, Bifidobacterium, and C. perfringens were considered, the optimal substitution level of DFRB were 12.00%, 11.84%, 7.50%, 8.92%, and 15.92%, respectively. In conclusion, 7% DFRB had a beneficial effect on intestinal wall thickness, Bifidobacterium and C. perfringens, and had no adverse effect on intestinal permeability and Escherichia coli.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
- Nanjing Agricultural University’s New Rural Research and Development Corporation of Huaian City, Huaian 223003, China
- Correspondence:
| | - Taoran Du
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Guang Pu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Lijuan Fan
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Chen Gao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Chengwu Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
| |
Collapse
|
20
|
Song M, Fan Y, Su H, Ye J, Liu F, Zhu X, Wang L, Gao P, Shu G, Wang Z, Zhu F, Lin G, Xue Y, Jiang Q, Wang S. Effects of Actigen, a second-generation mannan rich fraction, in antibiotics-free diets on growth performance, intestinal barrier functions and inflammation in weaned piglets. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Glycomacropeptide Bioactivity and Health: A Review Highlighting Action Mechanisms and Signaling Pathways. Nutrients 2019; 11:nu11030598. [PMID: 30870995 PMCID: PMC6471465 DOI: 10.3390/nu11030598] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Food-derived bioactive peptides are reported as beneficial and safe for human health. Glycomacropeptide (GMP) is a milk-protein-derived peptide that, in addition to its nutritional value, retains many biological properties and has therapeutic effects in several inflammatory disorders. GMP was shown under in vitro and in vivo conditions to exert a number of activities that regulate the physiology of important body systems, namely the gastrointestinal, endocrine, and immune systems. This review represents a comprehensive compilation summarizing the current knowledge and updated information on the major biological properties associated with GMP. GMP bioactivity is addressed with special attention on mechanisms of action, signaling pathways involved, and structural characteristics implicated. In addition, the results of various studies dealing with the effects of GMP on models of inflammatory diseases are reviewed and discussed.
Collapse
|
22
|
Yu H, Shang L, Zeng X, Li N, Liu H, Cai S, Huang S, Wang G, Wang Y, Song Q, Qiao S. Risks Related to High-Dosage Recombinant Antimicrobial Peptide Microcin J25 in Mice Model: Intestinal Microbiota, Intestinal Barrier Function, and Immune Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11301-11310. [PMID: 30298738 DOI: 10.1021/acs.jafc.8b03405] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptide (AMP) can be a promising alternative in various domains. However, further risk information is required. In this study, mice were orally administrated different dosages of recombinant AMP microcin J25 (4.55, 9.1, and 18.2 mg/kg; MccJ25) for 1 week, and the toxicity risk impacts were examined. We evidenced that middle-dosage administration mice had a lower inflammation, better body weight, and ameliorated mucosal morphology, accompanied by reduced intestinal permeability and tighter intestinal barrier. Fecal microbiota composition analysis in middle- or low-dosage mice revealed the Bifidobacterium count was increased and the coliform bacteria count was decreased, and increased in short-chain fatty acid levels. Unexpectedly, there was a risk that high-dosage mice increased intestinal permeability and imbalance of intestinal bacteria. Taken together, these data indicated a safe threshold for usage of MccJ25 in clinical practice. Such studies can effectively enhance the safety of various aspects such as food preservative and drug.
Collapse
Affiliation(s)
- Haitao Yu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Ning Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Hongbin Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Qinglong Song
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
- Beijing Longkefangzhou Bio-Engineering Technology Co., Ltd. , Beijing 100193 , People's Republic of China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| |
Collapse
|
23
|
Xia L, Dai L, Zhu L, Hu W, Yang Q. Proteomic Analysis of IPEC-J2 Cells in Response to Coinfection by Porcine Transmissible Gastroenteritis Virus and Enterotoxigenic Escherichia coli K88. Proteomics Clin Appl 2018; 11. [PMID: 29090858 DOI: 10.1002/prca.201600137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 09/22/2017] [Indexed: 01/03/2023]
Abstract
SCOPE Piglet diarrhea causes large economic losses to the swine industry. Epidemiological investigations show that piglet diarrhea is often caused by mixed infections, but the mechanisms by which multiple microorganisms cause disease are unclear. EXPERIMENTAL DESIGN Because transmissible gastroenteritis virus (TGEV) and enterotoxigenic Escherichia coli K88 (ETEC K88) are important contributors to piglet diarrhea, coinfection experiments are conducted using porcine intestinal columnar epithelial cells (IPEC-J2) as a model system. In order to evaluate piglet diarrhea caused TGEV and ETEC K88, the authors examin the effects of coinfection in IPEC-J2 cells. In TGEV pre-infected IPEC-J2 cells, ETEC K88 adhesion is enhanced over uninfected cells. ETEC K88 is also found to inhibit the proliferation of TGEV. Additionally, cytokine levels (IL-1β, IL-6, IL-8, and TNF-α) in coinfected cells are lower than cells infected by TGEV alone, and higher than cells infected by ETEC K88 alone. LCMS/MS coupled to isobaric tags for relative and absolute quantification (iTRAQ) is used to profile expressed proteins in IPEC-J2 cells infected by TGEV alone, ETEC K88 alone, and by both agents together. RESULTS 77, 89, and 136 differentially expressed proteins are identified in TGEV infected, ETEC K88 infected, and coinfected cells, respectively. CONCLUSION AND CLINICAL RELEVANCE Based on these data, the authors suspect that integrin α5 might enable TGEV to promote ETEC K88 adhesion. This study is the first to analyze piglet diarrhea caused by TGEV-ETEC K88 coinfection using high-throughput quantitative proteomics. The results advance the understanding of coinfection and its role in causing piglet diarrhea.
Collapse
Affiliation(s)
- Lu Xia
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Lei Dai
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Liqi Zhu
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Weiwei Hu
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Qian Yang
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| |
Collapse
|
24
|
Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu J, Huang Z, Zhu L, Luo J, Luo Y, Yu B. Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1829632. [PMID: 30225247 PMCID: PMC6129782 DOI: 10.1155/2018/1829632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The use of antibiotics as growth promoters in feed has been fully or partially banned in several countries. The objective of this study was to investigate the effects of benzoic acid (A), bacillus coagulans (B) and oregano oil (O) combined supplementation on growth performance and intestinal barrier in piglets challenged with enterotoxigenic Escherichia coli (ETEC). Thirty piglets were randomly assigned to 6 treatments: (1) nonchallenged control (CON); (2) ETEC-challenged control (ETEC); (3) antibiotics + ETEC (AT); (4) A + B + ETEC (AB); (5) A + O + ETEC (AO); (6) A + B + O + ETEC (ABO). On day 22, piglets were orally challenged with ETEC or saline. The trial lasted 26 days. Dietary AO and ABO inhibited the reduction of growth performance and the elevation of diarrhoea incidence in piglets induced by ETEC (P<0.05). AB, AO, and ABO prevented the elevation of serum TNF-α and LPS concentrations in piglets induced by ETEC (P<0.05). ABO alleviated the elevation of TNF-α and IL-1β concentrations and the reduction of sIgA level in jejunal mucosa induced by ETEC (P<0.05). Furthermore, ABO upregulated mRNA expressions of Claudin-1 and Mucin2 (P<0.05), downregulated mRNA abundances of TLR4 and NOD2 signaling pathways related genes in jejunal mucosa (P<0.05), and improved the microbiota in jejunal and cecal digesta (P<0.05) compared with ETEC group. These results indicated that benzoic acid, bacillus coagulans, and oregano oil combined supplementation could improve growth performance and alleviate diarrhoea of piglets challenged with ETEC via improving intestinal mucosal barrier integrity, which was possibly associated with the improvement of intestinal microbiota and immune status. The combination of 3000 g/t benzoic acid + 400 g/t bacillus coagulans + 400 g/t oregano oil showed better effects than other treatments in improving growth performance and intestinal health of piglets, which could be used as a viable substitute for antibiotic.
Collapse
Affiliation(s)
- Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ling Zhu
- Key Laboratory of Animal Biotechnology Center of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611134, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| |
Collapse
|
25
|
Yu HT, Ding XL, Li N, Zhang XY, Zeng XF, Wang S, Liu HB, Wang YM, Jia HM, Qiao SY. Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs. J Anim Sci 2018; 95:5064-5076. [PMID: 29293710 DOI: 10.2527/jas2017.1494] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microcin J25 (MccJ25) is an antimicrobial peptide produced by a fecal strain of Escherichia coli containing 21 AA. This study was performed primarily to evaluate the effects of MccJ25 as a potential substitute for antibiotics (AB) on growth performance, nutrient digestibility, fecal microbiota, and intestinal barrier function in weaned pigs. In the present study, 180 weaned pigs (7.98 ± 0.29 kg initial BW) were randomly assigned to 1 of 5 treatments, including a basal diet (CON) and CON supplemented with AB (20 mg/kg colistin sulfate; ABD) or 0.5, 1.0, and 2.0 mg/kg MccJ25. On d 0 to 14, dietary supplementation with MccJ25 and ABD had positive effects on ADG, ADFI, diarrhea incidence, and G:F ( < 0.05). Pigs fed the 2.0 mg/kg MccJ25 diet had greater ADG ( < 0.05) and marginally greater G:F ( < 0.10) compared with pigs fed the ABD diet. Compared with the CON diet, the 2.0 mg/kg MccJ25 diet sharply improved ( < 0.05) ADG and G:F and decreased ( < 0.05) diarrhea incidence (d 15 to 28 and d 0 to 28). Apparent digestibility of nutrients in pigs fed 1.0 and 2.0 mg/kg MccJ25 was improved ( < 0.05) compared with that of pigs fed CON and ABD. The serum cytokines IL-6 and IL-1β and tumor necrosis factor-α levels in pigs fed MccJ25 were greater than in pigs fed CON ( < 0.05). Additionally, the IL-10 concentration in pigs fed MccJ25 was sharply increased ( < 0.05) compared with that of pigs fed CON. Pigs fed 1.0 and 2.0 mg/kg MccJ25 diets had remarkably decreased lactate, diamine oxidase, and endotoxin concentrations and fecal numbers ( < 0.05) and improved fecal and numbers ( < 0.05). Compared with the ABD diet, the diet containing 2.0 mg/kg MccJ25 did not increase lactate, diamine oxidase, and endotoxin (d 14) concentrations ( < 0.05) or decrease the and (d 28) numbers ( < 0.05). The diets containing 1.0 and 2.0 mg/kg MccJ25 and ABD (d 28) improved lactate concentration and short-chain fatty acid concentrations, including acetate, propionate, and butyrate, in feces ( < 0.05). Moreover, the pigs fed 2.0 mg/kg MccJ25 had greater lactate, butyrate (d 14), and propionate concentrations than the pigs fed the ABD diet ( < 0.05). In conclusion, dietary supplemented MccJ25 effectively improved performance, attenuated diarrhea and systematic inflammation, enhanced intestinal barrier function, and improved fecal microbiota composition of weaned pigs. Therefore, MccJ25 could be a potential effective alternative to AB for weaned pigs.
Collapse
|
26
|
Yin J, Wu M, Li Y, Ren W, Xiao H, Chen S, Li C, Tan B, Ni H, Xiong X, Zhang Y, Huang X, Fang R, Li T, Yin Y. Toxicity assessment of hydrogen peroxide on Toll-like receptor system, apoptosis, and mitochondrial respiration in piglets and IPEC-J2 cells. Oncotarget 2018; 8:3124-3131. [PMID: 27966452 PMCID: PMC5356869 DOI: 10.18632/oncotarget.13844] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, expressions of toll-like receptors (TLRs) and apoptosis-related genes in piglets and mitochondrial respiration in intestinal porcine epithelial cells were investigated after hydrogen peroxide (H2O2) exposure. The in vivo results showed that H2O2 influenced intestinal expressions of TLRs and apoptosis related genes. H2O2 treatment (5% and 10%) downregulated uncoupling protein 2 (UCP2) expression in the duodenum (P < 0.05), while low dosage of H2O2 significantly increased UCP2 expression in the jejunum (P < 0.05). In IPEC-J2 cells, H2O2 inhibited cell proliferation (P < 0.05) and caused mitochondrial dysfunction via reducing maximal respiration, spare respiratory, non-mitochondrial respiratory, and ATP production (P < 0.05). However, 50 uM H2O2 significantly enhanced mitochondrial proton leak (P < 0.05). In conclusion, H2O2 affected intestinal TLRs system, apoptosis related genes, and mitochondrial dysfunction in vivo and in vitro models. Meanwhile, low dosage of H2O2 might exhibit a feedback regulatory mechanism against oxidative injury via increasing UCP2 expression and mitochondrial proton leak.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Miaomiao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yuying Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Xiao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Shuai Chen
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunyong Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Hengjia Ni
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xia Xiong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yuzhe Zhang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xingguo Huang
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China
| | - Rejun Fang
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan 410125, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China.,College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Wan J, Zhang J, Chen D, Yu B, Mao X, Zheng P, Yu J, Huang Z, Luo J, Luo Y, He J. Alginate oligosaccharide alleviates enterotoxigenicEscherichia coli-induced intestinal mucosal disruption in weaned pigs. Food Funct 2018; 9:6401-6413. [DOI: 10.1039/c8fo01551a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alginate oligosaccharide (AOS) is a non-toxic, non-immunogenic, non-carcinogenic and biodegradable product generated by depolymerisation of alginate, and exhibits various salutary properties.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Jiao Zhang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Jun He
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| |
Collapse
|
28
|
Pan L, Zhao PF, Ma XK, Shang QH, Xu YT, Long SF, Wu Y, Yuan FM, Piao XS. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J Anim Sci 2017; 95:2627-2639. [PMID: 28727032 DOI: 10.2527/jas.2016.1243] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
These studies evaluated the effects of probiotics (PB) as a potential substitute for antibiotics (AB) on diarrhea in relation to immune responses and intestinal health in weaned pigs challenged with enterotoxigenic (ETEC) K88 (Exp. 1) and the effects of PB on performance and nutrient digestibility in weaned pigs (Exp. 2). In Exp. 1, 24 weaned barrows (4.9 ± 0.4 kg initial BW) were randomly assigned to 1 of 4 treatments. The treatments consisted of pigs fed an unsupplemented corn-soybean meal basal diet and not challenged (NON-C) or challenged with ETEC K88 (CHA-C) on d 9 and pigs fed the same basal diet supplemented with AB (100 mg/kg zinc bacitracin, 50 mg/kg colistin sulfate, and 100 mg/kg olaquindox; CHA-AB) or 500 mg/kg PB ( and ; CHA-PB) and challenged with ETEC K88 on d 9. In Exp. 2, 108 weaned pigs (7.5 ± 0.9 kg initial BW) not challenged with ETEC K88 were randomly assigned to 1 of 3 treatments, including an AB-free basal diet (CON) and the basal diet with AB (ABD) or 500 mg/kg PB supplementation (PBD). In Exp. 1, after challenge, CHA-C decreased ( < 0.05) ADG and ADFI, whereas CHA-AB and CHA-PB revealed no significant change compared with NON-C. Compared with CHA-C, CHA-AB and CHA-PB improved ( < 0.05) ADG and ADFI and decreased ( < 0.05) the diarrhea incidence in pigs. Mucosal secretory Ig A contents in the jejunum and ileum were greater in CHA-C than in NON-C ( < 0.05) and lower than in CHA-PB ( < 0.05). The diet containing PB alleviated the increase in the endotoxin and diamine oxidase concentration and cecal count ( < 0.05) and the decrease in intestinal villus height, cecal count, and jejunal mucosal occludin protein abundance ( < 0.05). In Exp. 2, dietary supplementation with AB and PB had positive effects on ADG and feed efficiency ( < 0.05). Compared with CON, apparent digestibility of nutrients in PBD was improved ( < 0.05). Collectively, PB supplementation protected the pigs against ETEC K88 infection by enhancing immune responses and attenuating intestinal damage and improved the performance and nutrient digestibility of weaned pigs. Therefore, PB could be a potential effective alternative to AB for ameliorating diarrhea and improving performance in weaned pigs.
Collapse
|
29
|
Feeney S, Ryan JT, Kilcoyne M, Joshi L, Hickey R. Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia coli in Vitro. Foods 2017; 6:foods6110093. [PMID: 29077065 PMCID: PMC5704137 DOI: 10.3390/foods6110093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP) is the C-terminal portion of kappa-casein that is released from whey during cheese-making by the action of chymosin. Many of the biological properties associated with GMP, such as anti-adhesion, have been linked with the carbohydrate portion of the protein. In this study, we investigated the ability of GMP to inhibit the adhesion of a variety of pathogenic Escherichia coli strains to HT-29 and Caco-2 intestinal cell lines, given the importance of E. coli in causing bacterial gastroenteritis. GMP significantly reduced pathogen adhesion, albeit with a high degree of species specificity toward enteropathogenic E. coli (EPEC) strains O125:H32 and O111:H2 and enterohemorrhagic E. coli (EHEC) strain 12900 O157:H7. The anti-adhesive effect resulted from the interaction of GMP with the E. coli cells and was also dependent on GMP concentration. Pre-incubation of intestinal Caco-2 cells with GMP reduced pathogen translocation as represented by a decrease in transepithelial electrical resistance (TEER). Thus, GMP is an effective in-vitro inhibitor of adhesion and epithelial injury caused by E. coli and may have potential as a biofunctional ingredient in foods to improve gastrointestinal health.
Collapse
Affiliation(s)
- Shane Feeney
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Joseph Thomas Ryan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| | - Michelle Kilcoyne
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Rita Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| |
Collapse
|
30
|
Cui Y, Zhu C, Ming Z, Cao J, Yan Y, Zhao P, Pang G, Deng Z, Yao Y, Chen Q. Molecular mechanisms by which casein glycomacropeptide maintains internal homeostasis in mice with experimental ulcerative colitis. PLoS One 2017; 12:e0181075. [PMID: 28700735 PMCID: PMC5507290 DOI: 10.1371/journal.pone.0181075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES The aim of this study was to elucidate the molecular mechanisms by which food-derived casein glycomacropeptide (CGMP) maintains internal homeostasis in the intestinal mucosa and to investigate the effects of CGMP on the intestinal mucosal immunological barrier and related signal transduction pathways. METHODS In this study, a famoxadone (OXZ)-induced mouse experimental ulcerative colitis (UC) model was built. The experimental UC mice were intragastrically administered milk-derived CGMP for four consecutive days. The molecular mechanisms by which milk-derived CGMP improved and restored the inflammatory status in UC symptoms were elucidated by H&E staining, immunohistochemical staining and western blotting. RESULTS The results indicated that CGMP (50 mg/(kg bw·d)) could significantly improve morphological injury to intestinal mucosa in OXZ-induced UC mice to the same extent that did sulfasalazine (SASP, 40 mg/(kg bw·d)), a medicine used to treat UC, in the control group. The study found that CGMP could significantly reduce the expression of Human mucosal addressin cell adhesion molecule-1 (MAdCAM-1), Cluster of differentiation 4 (CD4) and Cluster of differentiation 8 (CD8) in the lamina propria of the intestinal mucosa and significantly stimulate the secretion of sIgA to increase intestinal immunity. Furthermore, CGMP was found to be directly involved in inhibiting the MAPK pathway and activating the TGF-β1/Smad signal transduction cascade, which could maintain immunological regulation of the intestinal mucosa and protect the functions of the intestinal mucosal barrier. CONCLUSIONS This study elucidated the molecular mechanisms by which CGMP maintained homeostasis of the intestinal mucosa and further confirmed its pharmaceutical value as a food-derived functional component with promising potential for further exploration/utilization.
Collapse
Affiliation(s)
- Yongbo Cui
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chenchen Zhu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Zhu Ming
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Jiangming Cao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yali Yan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Pei Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Guangchang Pang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Zixin Deng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yi Yao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Qingsen Chen
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
31
|
Sun H, Zhang L, Shen D. Urantide protects CCl 4-induced liver injury via inhibiting GPR14 signal in mice. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2016.1253436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Haiying Sun
- Department of Infectious Disease, Qingdao Hospital, Qingdao, China
| | - Lin Zhang
- Department of Infectious Disease, Qingdao Hospital, Qingdao, China
| | - Dan Shen
- Department of Infectious Disease, Qingdao Hospital, Qingdao, China
| |
Collapse
|