1
|
Ma F, Liu J, Li S, Sun P. Effects of Lonicera japonica Extract with Different Contents of Chlorogenic Acid on Lactation Performance, Serum Parameters, and Rumen Fermentation in Heat-Stressed Holstein High-Yielding Dairy Cows. Animals (Basel) 2024; 14:1252. [PMID: 38672400 PMCID: PMC11047513 DOI: 10.3390/ani14081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This examined the effects of Lonicera japonica extract (LJE) with different chlorogenic acid (CGA) contents on lactation performance, antioxidant status and immune function and rumen fermentation in heat-stressed high-yielding dairy cows. In total, 45 healthy Chinese Holstein high-yielding dairy cows, all with similar milk yield, parity, and days in milk were randomly allocated to 3 groups: (1) the control group (CON) without LJE; (2) the LJE-10% CGA group, receiving 35 g/(d·head) of LJE-10% CGA, and (3) the LJE-20% CGA group, receiving 17.5 g/(d·head) of LJE-20% CGA. The results showed that the addition of LJE significantly reduced RT, and enhanced DMI, milk yield, milk composition, and improved rumen fermentation in high-yielding dairy cows experiencing heat stress. Through the analysis of the serum biochemical, antioxidant, and immune indicators, we observed a reduction in CREA levels and increased antioxidant and immune function. In this study, while maintaining consistent CGA content, the effects of addition from both types of LJE are similar. In conclusion, the addition of LJE at a level of 4.1 g CGA/(d·head) effectively relieved heat stress and improved the lactation performance of dairy cows, with CGA serving as the effective ingredient responsible for its anti-heat stress properties.
Collapse
Affiliation(s)
- Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| |
Collapse
|
2
|
Antanaitis R, Džermeikaitė K, Krištolaitytė J, Ribelytė I, Bespalovaitė A, Bulvičiūtė D, Palubinskas G, Anskienė L. The Impacts of Heat Stress on Rumination, Drinking, and Locomotory Behavior, as Registered by Innovative Technologies, and Acid-Base Balance in Fresh Multiparous Dairy Cows. Animals (Basel) 2024; 14:1169. [PMID: 38672317 PMCID: PMC11047379 DOI: 10.3390/ani14081169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
This study hypothesizes that heat stress adversely affects dairy cows, resulting in reduced rumination, altering eating and drinking behaviors, changes in their locomotory patterns, and significant variations in their acid-base balance. The aim of this study was to investigate the impacts of heat stress on rumination, drinking, and locomotory behavior, as registered by innovative technologies, and acid-base balance in fresh multiparous dairy cows. This study was conducted during the summer, from 15 June to 8 July 2023, on a Lithuanian commercial dairy farm. We assessed 350 German Holstein cows that produced an average of 11,400 kg of milk annually throughout their second and subsequent lactation periods. We used the temperature-humidity index (THI) to divide the cows under investigation into three periods: I. high HS-THI >78 (period: 15-23 June 2023); II. medium HS-THI 72-78 (period: 24-30 June 2023); and III. low HS-THI <72 (period: 1-8 July 2023). The appropriate RumiWatch sensor (RWS) parameters were assessed between 15 June 2023 and 8 July 2023. Cows were acclimatized to the rumination, drinking, and locomotory behavior parameters during the adaptation period (1-30 June 2023). The registration process started on 15 June 2023 and terminated on 8 July 2023 and was performed every hour during the 24 h day. The acid-base balance was recorded from 15 June 2023 until 8 July 2023, once per week. The cows' activity increased by 11.75% in the high HS period compared to the low HS period (p < 0.01); high mean differences were detected for rumination, which was 17.67% higher in the high HS period and 13.80% higher in the medium HS period compared to the low HS period (p < 0.01); and the change in activity was 12.82% higher in the low HS compared to the medium HS period (p < 0.01). Cows under high HS had higher blood urea nitrogen (BUN) levels compared with cows under medium HS (p < 0.01). The observed alterations in the rumination, drinking, and locomotory behaviors, in addition to the acid-base balance, highlight the multifaceted impacts of varying heat stress on the physiological and behavioral responses of dairy cows. This suggests that the utilization of advanced technologies may assist dairy farmers in effectively monitoring and controlling heat stress in cows. Additionally, regularly assessing blood urea nitrogen levels can enable farmers to modify their feeding practices, thus promoting optimal cow well-being and productivity.
Collapse
Affiliation(s)
- Ramūnas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (K.D.); (J.K.); (I.R.); (A.B.); (D.B.)
| | - Karina Džermeikaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (K.D.); (J.K.); (I.R.); (A.B.); (D.B.)
| | - Justina Krištolaitytė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (K.D.); (J.K.); (I.R.); (A.B.); (D.B.)
| | - Ieva Ribelytė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (K.D.); (J.K.); (I.R.); (A.B.); (D.B.)
| | - Agnė Bespalovaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (K.D.); (J.K.); (I.R.); (A.B.); (D.B.)
| | - Deimantė Bulvičiūtė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (K.D.); (J.K.); (I.R.); (A.B.); (D.B.)
| | - Giedrius Palubinskas
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (G.P.); (L.A.)
| | - Lina Anskienė
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (G.P.); (L.A.)
| |
Collapse
|
3
|
Meng S, An Y, Wang Y, Wang S, Wang H, Shao Q, Dou M, He L, Zhang C. Tea polyphenols protect bovine intestinal epithelial cells from the adverse effects of heat-stress in vitro. Anim Biotechnol 2023; 34:3934-3945. [PMID: 37647094 DOI: 10.1080/10495398.2023.2244569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Heat-stress (HS) leads to impaired gut health, adversely affecting milk production of dairy cows. In the present study, we investigated the protective effects of tea polyphenols (TP) against HS-induced damage in bovine intestinal epithelial cells (BIECs) and explored the underlying mechanisms. Primary BIECs were isolated from bovine duodenum, cultured and treated as follows: (1) control cells incubated in complete medium at 37 °C for 12 h, (2) TP group incubated in medium containing 100 μg/mL TP at 37 °C for 12 h, (3) HS group incubated in medium at 37 °C for 6 h followed by 6 h at 42 °C, and (4) HS + TP group incubated with 100 μg/mL TP for 6 h at 37 °C and 6 h at 42 °C. TP improved cell viability and antioxidant capacity, and decreased apoptosis and LDH activity. TP led to upregulation of Nrf2 and its target antioxidant genes HO-1, NQO1 and SOD1 expression. TP significantly decreased the expression of proinflammatory cytokine genes (NF-κB, IL-6 and TNF-α), and increased expression of the anti-inflammatory cytokine gene, IL-10. The above results suggested that TP protected BIECs from HS-induced adverse effects by alleviating oxidative stress and inflammatory responses, indicating that TP can alleviate HS-induced intestinal damage in dairy cows.
Collapse
Affiliation(s)
- Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory, Luoyang, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yuexin Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Hongwei Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| |
Collapse
|
4
|
Zamorano-Algandar R, Medrano JF, Thomas MG, Enns RM, Speidel SE, Sánchez-Castro MA, Luna-Nevárez G, Leyva-Corona JC, Luna-Nevárez P. Genetic Markers Associated with Milk Production and Thermotolerance in Holstein Dairy Cows Managed in a Heat-Stressed Environment. BIOLOGY 2023; 12:biology12050679. [PMID: 37237493 DOI: 10.3390/biology12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Dairy production in Holstein cows in a semiarid environment is challenging due to heat stress. Under such conditions, genetic selection for heat tolerance appears to be a useful strategy. The objective was to validate molecular markers associated with milk production and thermotolerance traits in Holstein cows managed in a hot and humid environment. Lactating cows (n = 300) exposed to a heat stress environment were genotyped using a medium-density array including 53,218 SNPs. A genome-wide association study (GWAS) detected six SNPs associated with total milk yield (MY305) that surpassed multiple testing (p < 1.14 × 10-6). These SNPs were further validated in 216 Holstein cows from two independent populations that were genotyped using the TaqMan bi-allelic discrimination method and qPCR. In these cows, only the SNPs rs8193046, rs43410971, and rs382039214, within the genes TLR4, GRM8, and SMAD3, respectively, were associated (p < 0.05) with MY305, rectal temperature (RT), and respiratory rate. Interestingly, these variables improved as the number of favorable genotypes of the SNPs increased from 0 to 3. In addition, a regression analysis detected RT as a significant predictor (R2 = 0.362) for MY305 in cows with >1 favorable genotype, suggesting this close relationship was influenced by genetic markers. In conclusion, SNPs in the genes TLR4, GRM8, and SMAD3 appear to be involved in the molecular mechanism that regulates milk production in cows under heat-stressed conditions. These SNPs are proposed as thermotolerance genetic markers for a selection program to improve the milk performance of lactating Holstein cows managed in a semiarid environment.
Collapse
Affiliation(s)
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - José C Leyva-Corona
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
5
|
Nohara M, Hisaeda K, Ono T, Inoue Y, Ogawa K, Hata A, Sibano K, Nagahata H, Fujitani N. The relationships between environmental parameters in livestock pen and physiological parameters of Holstein dairy cows. J Vet Med Sci 2022; 84:964-977. [PMID: 35650166 PMCID: PMC9353096 DOI: 10.1292/jvms.22-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There has been an increase in temperature and the incidence of extreme weather events, such as heat wave, due to global warming, which has promoted the incidence of livestock diseases.
Therefore, it is important to examine the effect of changes in environmental parameters on livestock performance. The aim of this study was to examine the relationship between ambient
environmental conditions in livestock pen and the physiological parameters of Holstein dairy cows. The results showed that there was a decrease in the red blood cell counts, hemoglobin
concentrations, and mean corpuscular hemoglobin concentration of the cows with increasing pen temperature, wet bulb globe temperature (WBGT), and temperature humidity index (THI).
Additionally, high daily variation in temperature caused a decrease in the serum albumin levels of the cows. Moreover, the lowest serum calcium, inorganic phosphorus, and magnesium
concentrations were observed in November, and were negatively correlated with the 24-hr temperature, WBGT, and THI range of the pen prior to sampling. Multiple regression analysis showed a
positive correlation between serum cortisol concentration and 24-hr WBGT range of the pen prior to samplings and packed cell volume. However, serum cortisol and total protein concentrations
were negatively correlated. Overall, the findings of the study suggest that large variation in temperature induced stress in the cows, which could be overcome by increased water consumption
and improved protein digestion and absorption by the animals, and the addition of minerals, such as calcium to the diet.
Collapse
Affiliation(s)
- Masakatsu Nohara
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science
| | - Keiichi Hisaeda
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science
| | - Tetsushi Ono
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Yoichi Inoue
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Kouji Ogawa
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Akihisa Hata
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Kenichi Sibano
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Hajime Nagahata
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science
| | - Noboru Fujitani
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science
| |
Collapse
|
6
|
Zheng C, Wu Y, Liang ZH, Pi JS, Cheng SB, Wei WZ, Liu JB, Lu LZ, Li CF, Zhang H. Plasma metabolites associated with physiological and biochemical indexes indicate the effect of caging stress on mallard ducks (Anas platyrhynchos). Anim Biosci 2021; 35:224-235. [PMID: 34474531 PMCID: PMC8738941 DOI: 10.5713/ab.21.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Cage rearing has critical implications for the laying duck industry because it is convenient for feeding and management. However, caging stress is a type of chronic stress that induces maladaptation. Environmental stress responses have been extensively studied, but no detailed information is available about the comprehensive changes in plasma metabolites at different stages of caging stress in ducks. We designed this experiment to analyze the effects of caging stress on performance parameters and oxidative stress indexes in ducks. Methods Liquid chromatography tandem mass spectrometry (LC/MS-MS) was used to determine the changes in metabolites in duck plasma at 5 (CR5), 10 (CR10), and 15 (CR15) days after cage rearing and traditional breeding (TB). The associated pathways of differentially altered metabolites were analyzed using Kyoto encyclopedia of genes and genomes (KEGG) database. Results The results of this study indicate that caging stress decreased performance parameters, and the plasma total superoxide dismutase levels were increased in the CR10 group compared with the other groups. In addition, 1,431 metabolites were detected. Compared with the TB group, 134, 381, and 190 differentially produced metabolites were identified in the CR5, CR10, and CR15 groups, respectively. The results of principal component analysis (PCA) show that the selected components sufficiently distinguish the TB group and CR10 group. KEGG analysis results revealed that the differentially altered metabolites in duck plasma from the CR5 and TB groups were mainly associated with ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, and phenylalanine metabolism. Conclusion In this study, the production performance, blood indexes, number of metabolites and PCA were compared to determine effect of the caging stress stage on ducks. We inferred from the experimental results that caging-stressed ducks were in the sensitive phase in the first 5 days after caging, caging for approximately 10 days was an important transition phase, and then the duck continually adapted.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yan Wu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Zhen Hua Liang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Jin Song Pi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Shi Bin Cheng
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | | | - Jing Bo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Zhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Feng Li
- Hubei Shendan Healthy Food Co..Ltd, Anlu, 432600, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| |
Collapse
|
7
|
Li H, Zhang Y, Li R, Wu Y, Zhang D, Xu H, Zhang Y, Qi Z. Effect of seasonal thermal stress on oxidative status, immune response and stress hormones of lactating dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:216-223. [PMID: 33997350 PMCID: PMC8110863 DOI: 10.1016/j.aninu.2020.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/28/2020] [Accepted: 07/08/2020] [Indexed: 01/29/2023]
Abstract
This study aimed to assess the impact of seasonal thermal stress on oxidative stress, immune response, and stress hormones of lactating dairy cows in subtropical regions with different levels of temperature-humidity index (THI). A total of 32 healthy lactating Holstein dairy cows experienced 4 seasons (8 cows/season). The physiological parameters were categorized into low THI (LTHI, THI = 42.97 ± 0.95) in winter, moderate THI (MTHI, THI = 61.84 ± 0.42) in spring and autumn, and high THI period (HTHI, THI = 86.09 ± 0.23) in summer. The blood samples were collected twice in each season to measure oxidative stress, inflammatory and hormonal parameters. Our results showed THI had a positive correlation with the rectal temperature (R 2 = 0.821, P < 0.001) and respiratory rate (R 2 = 0.816, P < 0.001). Dry matter intake, milk yield and fat percentage also significantly differed among groups (P < 0.05). Compared with the MTHI group, the LTHI group exhibited a significant increase in malondialdehyde (MDA) level (P < 0.001), and the HTHI group displayed a significant increase in levels of cortisol, interleukin (IL)-10, IL-1β and tumor necrosis factor-α (P < 0.001). Opposite changes in serum endotoxin and immunoglobulin G levels were observed with the increasing THI (P < 0.001). LTHI notably increased the triiodothyronine level, although the thyroxine level was reduced by LTHI and HTHI compared with the MTHI group. In conclusion, LTHI and HTHI conditions may induce different degrees of oxidative stress, inflammation response, and stress hormone imbalances on lactating dairy cows, therefore environmental management is necessary for the health of dairy cows in extreme weather conditions.
Collapse
Affiliation(s)
- Han Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifeng Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dingran Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongrun Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangdong Zhang
- Institute of Animal and Veterinary Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhili Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Yue S, Ding S, Zhou J, Yang C, Hu X, Zhao X, Wang Z, Wang L, Peng Q, Xue B. Metabolomics Approach Explore Diagnostic Biomarkers and Metabolic Changes in Heat-Stressed Dairy Cows. Animals (Basel) 2020; 10:E1741. [PMID: 32992834 PMCID: PMC7601318 DOI: 10.3390/ani10101741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
In the present experiment, we investigated the impact of heat stress (HS) on physiological parameters, dry matter intake, milk production, the metabolome of milk, and blood plasma in lactating Holstein dairy cows. For this purpose, 20 Holstein lactating cows were distributed in two groups in such a way that each group had 10 cows. A group of 10 cows was reared in HS conditions, while the other group of 10 cows was reared in the thermoneutral zone. The results of the experiment showed that cows subjected to HS had higher respiration rates (p < 0.01) and greater rectal temperature (p < 0.01). Results of milk production and composition explored that HS lowered milk production (p < 0.01) and milk protein percentage (p < 0.05) than cows raised in a thermoneutral place. Furthermore, HS increased the concentrations of N-acetyl glycoprotein, scyllo-inositol, choline, and pyridoxamine in milk, while HS decreased the concentrations of O-acetyl glycoprotein, glycerophosphorylcholine, citrate, and methyl phosphate in milk. Moreover, HS enhanced plasma concentrations of alanine, glucose, glutamate, urea, 1-methylhistidine, histidine, and formate in cows, while the plasma concentration of low-density lipoprotein, very-low-density lipoprotein, leucine, lipid, and 3-hydroxybutyrate decreased due to HS. Based on the findings of the current research, it is concluded that HS alters the milk and blood plasma metabolites of lactating Holstein dairy cows. Overall, in the current experiment, HS altered eight metabolites in milk and twelve metabolites in the plasma of lactating Holstein dairy cows. Furthermore, the current study explored that these metabolites were mainly involved in proteolysis, gluconeogenesis, and milk fatty acid synthesis and could be potential biomarkers for dairy cows undergoing HS.
Collapse
Affiliation(s)
- Shuangming Yue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
- Department of Bioengineering, Sichuan Water Conservancy Vocation College, Chengdu 611845, China;
| | - Siyan Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
| | - Jia Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
| | - Chao Yang
- Department of Bioengineering, Sichuan Water Conservancy Vocation College, Chengdu 611845, China;
| | - Xiaofei Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
| | - Xiaonan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
| | - Quanhui Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (S.D.); (J.Z.); (X.H.); (X.Z.); (Z.W.); (L.W.); (Q.P.)
| |
Collapse
|
9
|
Sammad A, Wang YJ, Umer S, Lirong H, Khan I, Khan A, Ahmad B, Wang Y. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals (Basel) 2020; 10:ani10050793. [PMID: 32375261 PMCID: PMC7278580 DOI: 10.3390/ani10050793] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Modern dairy cows have elevated internal heat loads caused by high milk production, and the effects of accumulating incremental heat are exacerbated when temperature and humidity increases in the surroundings. To shed this additional heat, cows initiate a variety of adaptive mechanisms including increased respiration rate, panting, sweating, reduced milk yield, vasodilatation, and decreased reproductive performance. Hormonal changes based on reciprocal alterations to the energetic metabolism are particularly accountable for reduced efficiency of the dairy production under the heat stress. As animals experience negative energy balance; glucose, which is also a precursor of milk lactose, becomes the preferential energy fuel. In the absence of proper mitigations, heat stress possesses potential risk of economic losses to dairy sector. Besides physical measures for the timely prediction of the actual heat stress coupled with its proper amelioration, nutritional mitigation strategies should target modulating energetic metabolism and rumen environment. Abstract Higher milk yield and prolificacy of the modern dairy cattle requires high metabolism activities to support them. It causes high heat production by the body, which coupled with increasing environmental temperatures results in heat stress (HS). Production, health, and welfare of modern cattle are severely jeopardized due to their low adaptability to hot conditions. Animal activates a variety of physiological, endocrine, and behavioral mechanisms to cope with HS. Traditionally, decreased feed intake is considered as the major factor towards negative energy balance (NEBAL) leading to a decline in milk production. However, reciprocal changes related to insulin; glucose metabolism; failure of adipose mobilization; and skeletal muscle metabolism have appeared to be the major culprits behind HS specific NEBAL. There exists high insulin activity and glucose become preferential energy fuel. Physiological biochemistry of the heat stressed cows is characterized by low-fat reserves derived NEFA (non-esterified fatty acids) response, despite high energy demands. Besides these, physiological and gut-associated changes and poor feeding practices can further compromise the welfare and production of the heat-stressed cows. Better understanding of HS specific nutritional physiology and metabolic biochemistry of the dairy cattle will primarily help to devise practical interventions in this context. Proper assessment of the HS in cattle and thereby applying relevant cooling measures at dairy seems to be the basic mitigation approach. Score of the nutritional strategies be applied in the eve of HS should target supporting physiological responses of abatement and fulfilling the deficiencies possessed, such as water and minerals. Second line of abatement constitutes proper feeding, which could augment metabolic activities and synergizes energy support. The third line of supplemental supports should be directed towards modulating the metabolic (propionates, thiazolidinediones, dietary buffers, probiotics, and fermentates) and antioxidant responses (vitamins). Comprehensive understanding of the energetic metabolism dynamics under the impact of incremental heat load and complete outlook of pros and cons of the dietary ameliorating substances together with the discovery of the newer relevant supplementations constitutes the future avenues in this context.
Collapse
Affiliation(s)
- Abdul Sammad
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Ya Jing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Saqib Umer
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (I.K.)
| | - Hu Lirong
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Imran Khan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (I.K.)
| | - Adnan Khan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Baseer Ahmad
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
- Correspondence:
| |
Collapse
|
10
|
Akhlaghi B, Ghorbani GR, Alikhani M, Kargar S, Sadeghi-Sefidmazgi A, Rafiee-Yarandi H, Rezamand P. Effect of production level and source of fat supplement on performance, nutrient digestibility and blood parameters of heat-stressed Holstein cows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:313-323. [PMID: 31844541 PMCID: PMC6906130 DOI: 10.5187/jast.2019.61.6.313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022]
Abstract
The interactive effect of dietary fat supplementation and milk yield level on dairy cows performance under heat stress has not been thoroughly investigated. The purpose of this study was to evaluate the effect of production level, the source of fat supplements and their interaction on dairy cows performance under heat stress. In this study, 64 Holstein multiparous cows were divided into 2 groups and received one of two rations having either calcium salts of fatty acids (Ca-FA) or high-palmitic acid (PA) supplements (2.8% of DM; dry matter). After completing the experiment and based on maturity-equivalent milk, cows were divided into two groups of high-yielding (14,633 kg) and medium-yielding (11,616 kg). Average temperature humidity index (THI) was 71 during the trial period. Apparent digestibility of dry matter (p = 0.04), organic matter (p = 0.05), and neutral detergent fiber (NDF; p = 0.04) for cows fed Ca-FA were greater than cows fed PA. The milk fat content in high-producing cows was 0.3% greater than medium-producing cows (p = 0.03). The milk protein content in cows fed Ca-FA was greater than cows fed PA (p < 0.01). High-producing cows had greater serum cholesterol (p = 0.02) than medium-producing cows. The cows fed PA tended to have a greater BUN than cows fed Ca-FA (p = 0.06). Alanine aminotransferase and aspartate aminotransferase tended to be increased by PA, which indicates that cows in PA treatment may have experienced more adverse effect on the liver function than cows on Ca-FA. Therefore, under heat stress and in 90 d trial, milk production level does not affect the cows' response to PA or Ca-FA. Although cows fed Ca-FA received lower energy than those fed PA, they compensated for this shortage likely with increasing the digestibility and produced a similar amount of milk.
Collapse
Affiliation(s)
- Behzad Akhlaghi
- Department of Animal Sciences, College of
Agriculture, Isfahan University of Technology, Isfahan 4156-83111,
Iran
| | - Gholam Reza Ghorbani
- Department of Animal Sciences, College of
Agriculture, Isfahan University of Technology, Isfahan 4156-83111,
Iran
| | - Masoud Alikhani
- Department of Animal Sciences, College of
Agriculture, Isfahan University of Technology, Isfahan 4156-83111,
Iran
| | - Shahryar Kargar
- Department of Animal Sciences, College of
Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Ali Sadeghi-Sefidmazgi
- Department of Animal Sciences, College of
Agriculture, Isfahan University of Technology, Isfahan 4156-83111,
Iran
| | - Hassan Rafiee-Yarandi
- Department of Animal Sciences, College of
Agriculture, Isfahan University of Technology, Isfahan 4156-83111,
Iran
| | - Pedram Rezamand
- Department of Animal and Veterinary
Science, University of Idaho, Moscow Idaho 83844-2330,
USA
| |
Collapse
|