1
|
Li S, Lu T, Lin Z, Zhang Y, Zhou X, Li M, Miao H, Yang Z, Han X. Supplementation with probiotics co-cultivation improves the reproductive performance in a sow-piglet model by mother-infant microbiota transmission and placental mTOR signaling. World J Microbiol Biotechnol 2024; 41:13. [PMID: 39704872 DOI: 10.1007/s11274-024-04222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Maternal nutritional supplementation has a profound effect on the growth and development of offspring. FAM® is produced by co-cultivation of Lactobacillus acidophilus and Bacillus subtilis and has been demonstrated to potentially alleviate diarrhea, improve growth performance and the intestinal barrier integrity of weaned piglets. This study aimed to explore how maternal FAM improves the reproductive performance through mother-infant microbiota, colostrum and placenta. A total of 40 pregnant sows (Landrace × Large White) on d 85 of gestation with a similar parity were randomly divided into two groups (n = 20): the control group (Con, basal diet) and the FAM group (FAM, basal diet supplemented with 0.2% FAM). The experimental period was from d 85 of gestation to d 21 of lactation. The results revealed that maternal supplementation with FAM significantly decreased the number of weak-born litters and the incidence of diarrhea, as well as increasing birth weight and average weaning weight, accompanied by increased levels of colostrum nutrient composition and immunoglobulins. In addition, FAM modulated the structure of mother-infant microbiota and promoted the vertical transmission of beneficial bacteria, such as Verrucomicrobiota and Akkermansia. Furthermore, FAM contributed to improving the expression of GLU and AA transporters in the placenta, and increasing the activity of the mTOR signaling pathway. Collectively, maternal supplementation with FAM during late pregnancy and lactation could improve reproductive performance through the transmission of beneficial mother-infant microbiota and placental mTOR signaling pathway and promote fetal development.
Collapse
Affiliation(s)
- Suchen Li
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Lu
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhixin Lin
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhang
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinchen Zhou
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Hui Miao
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhiren Yang
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyan Han
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Wei J, Su J, Wang G, Li W, Wen Z, Liu H. Chitooligosaccharides improves intestinal mucosal immunity and intestinal microbiota in blue foxes. Front Immunol 2024; 15:1506991. [PMID: 39628477 PMCID: PMC11611864 DOI: 10.3389/fimmu.2024.1506991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Objective Gut health is critical to the health of the host. This study was conducted to investigate the effects of Chitooligosaccharides (COS) on intestinal morphology, intestinal barrier, intestinal immunity and cecum microbiota of blue foxes. Methods Seventy-two 125-day-old blue foxes were randomly divided into basal diet (BD) group, 200 ppm COS1 (1.5 kDa) group and 200 ppm COS2 (3 kDa) group for 8 weeks. Results We elucidated that dietary COS1 supplementation promoted the development of intestinal villus morphology in blue foxes. Importantly, COS1 increased the number of goblet cells in duodenum, jejunum and ileum by 27.71%, 23.67%, 14.97% and S-IgA secretion in duodenum, jejunum and ileum by 71.59% and 38.56%, and up-regulate the expression of Occludin and ZO-1 by 50.18% and 148.62%, respectively. Moreover, COS1 promoted the pro-inflammatory and anti-inflammatory balance of small intestinal mucosa, and increased the diversity of cecum microbiota of blue foxes, especially Lactobacillus_agilis and Lactobacillus_murinus, and up-regulated the signaling pathways related to polysaccharide decomposition and utilization. Conclusion Here, we present dietary COS1 (1.5 kDa) can promote intestinal villus development, enhance intestinal barrier function, regulate intestinal immune balance and cecum microbiota homeostasis.
Collapse
Affiliation(s)
- Jiali Wei
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Su
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guiwu Wang
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Li
- Technological Innovation Center for Fur Animal Breeding of Hebei, Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | | | - Huitao Liu
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
3
|
Li X, Ye H, Su T, Hu C, Huang Y, Fu X, Zhong Z, Du X, Zheng Y. Immunity and reproduction protective effects of Chitosan Oligosaccharides in Cyclophosphamide/Busulfan-induced premature ovarian failure model mice. Front Immunol 2023; 14:1185921. [PMID: 37228612 PMCID: PMC10203494 DOI: 10.3389/fimmu.2023.1185921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Premature ovarian failure (POF) is a major cause of infertility among women of reproductive age. Unfortunately, there is no effective treatment available currently. Researchers have shown that immune disorders play a significant role in the development of POF. Moreover, growing evidence suggest that Chitosan Oligosaccharides (COS), which act as critical immunomodulators, may have a key role in preventing and treating a range of immune related reproductive diseases. Methods KM mice (6-8 weeks) received a single intraperitoneal injection of cyclophosphamide (CY, 120mg/kg) and busulfan (BUS, 30mg/kg) to establish POF model. After completing the COS pre-treatment or post-treatment procedures, peritoneal resident macrophages (PRMs) were collected for neutral erythrophagocytosis assay to detect phagocytic activity. The thymus, spleen and ovary tissues were collected and weighed to calculate the organ indexes. Hematoxylin-eosin (HE) staining was performed to observe the histopathologic structure of those organs. The serum levels of estrogen (E2) and progesterone (P) were measured via the enzyme-linked immunosorbent assay (ELISA). The expression levels of immune factors including interleukin 2 (IL-2), interleukin 4 (IL-4), and tumor necrosis factor α (TNF-α), as well as germ cell markers Mouse Vasa Homologue (MVH) and Fragilis in ovarian tissue, were analyzed by Western blotting and qRT-PCR. In addition, ovarian cell senescence via p53/p21/p16 signaling was also detected. Results The phagocytic function of PRMs and the structural integrity of thymus and spleen were preserved by COS treatment. The levels of certain immune factors in the ovaries of CY/BUS- induced POF mice were found to be altered, manifested as IL-2 and TNF-α experiencing a significant decline, and IL-4 presenting a notable increase. Both pre-treatment and post-treatment with COS were shown to be protective effects against the damage to ovarian structure caused by CY/BUS. Senescence-associated β-galactosidase (SA-β-Gal) staining results showed that COS prevents CY/BUS-induced ovarian cell senescence. Additionally, COS regulated estrogen and progesterone levels, enhanced follicular development, and blocked ovarian cellular p53/p21/p16 signaling which participating in cell senescence. Conclusion COS is a potent preventative and therapeutic medicine for premature ovarian failure by enhancing both the ovarian local and systemic immune response as well as inhibiting germ cell senescence.
Collapse
Affiliation(s)
- Xiaoyan Li
- Biobank center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haifeng Ye
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Zentrum München, Munich, Germany
| | - Tie Su
- Department of Pathology, Yingtan People’s Hospital, Yingtan, China
| | - Chuan Hu
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Huang
- Reproductive Center of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinxin Fu
- National Demonstration Center for Clinical Teaching & Training, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xuelian Du
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
4
|
Influence of dietary chitosan supplementation on ovarian development and reproductive performance of New Zealand White rabbit does. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
This study aimed to determine the effect of dietary chitosan supplementation on the productive and reproductive performance of New Zealand White (NZW) rabbits. Forty healthy weaned female rabbits were randomly distributed into four experimental groups (10 females per group) and fed ad libitum for six months. A basal diet without chitosan supplementation was used as a control. The other three experimental groups were fed a basal diet plus 0.2, 0.4, or 0.6 g chitosan/kg diet. After eight weeks, three females from each group were sacrificed for morphological observation of ovarian tissues. The remaining animals were used for reproductive studies by a maximum of three parities. Morphological observation of ovaries demonstrated that females fed a diet containing 0.2 g/kg chitosan had increased ovarian diameter and elevated the number of mature follicles compared with the control and the other experimental groups. Receptivity, conception rate, and kindling interval were significantly (P˂0.05) higher in females fed diets containing 0.2 and 0.4 g/kg chitosan compared to the other groups. Moreover, there was a trend toward a higher average milk yield throughout the lactating period in females fed a diet containing 0.2 g/kg chitosan (P=0.904). Diets containing up to 0.4 g/kg chitosan were positively correlated with increased receptivity rate and several parties. However, diets containing up to 0.4 g/kg chitosan were negatively correlated with decreased receptivity time, kindling interval, litter size at weaning, mortality rate at weaning, bunny weight at weaning, and milk yield. The present study’s findings indicate that diets containing 0.2 g/kg chitosan improved reproductive efficiency in female NZW rabbits.
Collapse
|
5
|
Liu N, Shen H, Zhang F, Liu X, Xiao Q, Jiang Q, Tan B, Ma X. Applications and prospects of functional oligosaccharides in pig nutrition: A review. ANIMAL NUTRITION 2023. [DOI: 10.1016/j.aninu.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Xu S, Jia X, Liu Y, Pan X, Chang J, Wei W, Lu P, Petry D, Che L, Jiang X, Wang J, Wu D. Effects of yeast-derived postbiotic supplementation in late gestation and lactation diets on performance, milk quality, and immune function in lactating sows. J Anim Sci 2023; 101:skad201. [PMID: 37330668 PMCID: PMC10294553 DOI: 10.1093/jas/skad201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
This experiment was conducted to determine the effects of yeast-derived postbiotic (YDP) supplementation in sow diets during late gestation and lactation on the performance of sows and their offspring. At 90-d gestation, 150 sows (Landrace × Large White, parity: 3.93 ± 0.11) were allocated to three dietary treatments (n = 50 per treatment): 1) basal diet (control [CON]), 2) basal diet with 1.25 g/kg YDP (0.125 group), and 3) basal diet with 2.00 g/kg YDP (0.200 group). The experiment continued until the end of weaning (day 21 of lactation). Supplementation with YDP resulted in greater deposition of backfat in sows during late gestation and an increasing trend in average weaning weight of piglets than observed in the CON group (P < 0.01, P = 0.05). Supplementation with YDP decreased piglet mortality and diarrhea index in piglets (P < 0.05). In farrowing sows' serum, the glutathione peroxide content in the YDP group was lower than that in the CON group (P < 0.05); the content of immunoglobulin A (IgA) in the 0.200 group or YDP group was higher than that in the CON group (P < 0.05). In lactating sows' serum, malondialdehyde content was higher in the YDP group (P < 0.05). In day 3 milk of sows, the 0.200 group tended to increase the lactose content (P = 0.07), and tended to decrease the secretory immunoglobulin A (sIgA) content (P = 0.06) with respect to that in the CON group. The sIgA content in the YDP group was lower than that in the CON group (P < 0.05). In the milk of sows, the 0.200 group tended to increase the lactose content with respect to that in the CON group (P = 0.08); the immunoglobulin G (IgG) content in the 0.125 group or YDP group was higher than that in the CON group (P < 0.05). YDP supplementation increased the IgA content in the milk (P < 0.01). In sow placenta, the content of total anti-oxidant capacity in the YDP group was higher than that in the CON group (P = 0.05); and the content of transforming growth factor-β in the YDP group was higher than that in the CON group (P < 0.05). In piglet serum, the content of IgG and immunoglobulin M in the 0.125 group was higher than that in the CON and 0.200 groups (P < 0.05). In summary, this study indicated that feeding sows diets supplemented with YDP from late gestation through lactation increased sows' backfat deposition in late gestation and piglets' weaning weight; decreased piglet mortality and diarrhea index in piglets; and improved maternal and offspring immunity.
Collapse
Affiliation(s)
- Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xinlin Jia
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yalei Liu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - XuJing Pan
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - JunLei Chang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Wenyan Wei
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Ping Lu
- Diamond V Mills LLC, Hilda Rapids, IA, USA
| | | | - Lianqiang Che
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xuemei Jiang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jianping Wang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - De Wu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| |
Collapse
|
7
|
Tian M, Li Q, Zheng T, Yang S, Chen F, Guan W, Zhang S. Maternal microbe-specific modulation of the offspring microbiome and development during pregnancy and lactation. Gut Microbes 2023; 15:2206505. [PMID: 37184203 DOI: 10.1080/19490976.2023.2206505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The maternal microbiome is essential for the healthy growth and development of offspring and has long-term effects later in life. Recent advances indicate that the maternal microbiome begins to regulate fetal health and development during pregnancy. Furthermore, the maternal microbiome continues to affect early microbial colonization via birth and breastfeeding. Compelling evidence indicates that the maternal microbiome is involved in the regulation of immune and brain development and affects the risk of related diseases. Modulating offspring development by maternal diet and probiotic intervention during pregnancy and breastfeeding could be a promising therapy in the future. In this review, we summarize and discuss the current understanding of maternal microbiota development, perinatal microbial metabolite transfer, mother-to-infant microbial transmission during/after birth and its association with immune and brain development as well as corresponding diseases.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Chitosan Oligosaccharide Supplementation Affects Immunity Markers in Ewes and Lambs during Gestation and Lactation. Animals (Basel) 2022; 12:ani12192609. [PMID: 36230349 PMCID: PMC9558557 DOI: 10.3390/ani12192609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Chitosan oligosaccharide (COS) is derived through deacetylation of chitin from crustacean shells. Previous studies reported the benefits of COS to gut microbiota, immunity and health of host species. In this study, 120 pregnant composite ewes were subdivided into treatment and control groups in duplicate. COS was supplemented via a loose lick to provide an estimated intake of COS @100−600 mg/d/ewe for five weeks pre-lambing until lamb marking. Body weight was recorded pre-treatment for ewes, and at lamb marking and weaning for both ewes and lambs. Serum immunity markers immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), secretory immunoglobulin A (sIgA), interleukin (IL)-2, IL10 and faecal sIgA were determined for ewes and lambs at lamb marking and weaning by enzyme-linked immunosorbent assay (ELISA). We found that COS can be incorporated in sheep feed without compromising palatability. Maternal COS supplementation did not influence the body weight of ewes or lambs. It did, however, significantly increase the concentrations of serum IL2 in ewes at marking and weaning (p < 0.001). In lambs, COS also significantly increased the IL2 concentration at making (p = 0.018) and weaning (p = 0.029) and serum IgM at marking (p < 0.001). No significant effect was observed in the concentration of any other immune marker or cytokine in either ewes or lambs. In conclusion, maternal COS supplementation significantly modulated some immunity markers in both ewes and lambs. The short duration of maternal COS supplementation and optimal seasonal conditions during the trial may explain the lack of significant body weight in ewes and lambs from the COS supplementation.
Collapse
|
9
|
Multifunctional role of chitosan in farm animals: a comprehensive review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
The deacetylation of chitin results in chitosan, a fibrous-like material. It may be produced in large quantities since the raw material (chitin) is plentiful in nature as a component of crustacean (shrimps and crabs) and insect hard outer skeletons, as well as the cell walls of some fungi. Chitosan is a nontoxic, biodegradable, and biocompatible polygluchitosanamine that contains two essential reactive functional groups, including amino and hydroxyl groups. This unique chemical structure confers chitosan with many biological functions and activities such as antimicrobial, anti-inflammatory, antioxidative, antitumor, immunostimulatory and hypocholesterolemic, when used as a feed additive for farm animals. Studies have indicated the beneficial effects of chitosan on animal health and performance, aside from its safer use as an antibiotic alternative. This review aimed to highlight the effects of chitosan on animal health and performance when used as a promising feed additive.
Collapse
|
10
|
Wen J, Niu X, Chen S, Chen Z, Wu S, Wang X, Yong Y, Liu X, Yu Z, Ma X, Abd El-Aty A, Ju X. Chitosan oligosaccharide improves the mucosal immunity of small intestine through activating SIgA production in mice: Proteomic analysis. Int Immunopharmacol 2022; 109:108826. [DOI: 10.1016/j.intimp.2022.108826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
|
11
|
Li Q, Yang S, Zhang X, Liu X, Wu Z, Qi Y, Guan W, Ren M, Zhang S. Maternal Nutrition During Late Gestation and Lactation: Association With Immunity and the Inflammatory Response in the Offspring. Front Immunol 2022; 12:758525. [PMID: 35126349 PMCID: PMC8814630 DOI: 10.3389/fimmu.2021.758525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
The immature immune system at birth and environmental stress increase the risk of infection in nursing pigs. Severe infection subsequently induces intestinal and respiratory diseases and even cause death of pigs. The nutritional and physiological conditions of sows directly affect the growth, development and disease resistance of the fetus and newborn. Many studies have shown that providing sows with nutrients such as functional oligosaccharides, oils, antioxidants, and trace elements could regulate immunity and the inflammatory response of piglets. Here, we reviewed the positive effects of certain nutrients on milk quality, immunoglobulin inflammatory response, oxidative stress, and intestinal microflora of sows, and further discuss the effects of these nutrients on immunity and the inflammatory response in the offspring.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| |
Collapse
|