1
|
Liu Y, Yuan J, Xi W, Wang Z, Liu H, Zhang K, Zhao J, Wang Y. Lactiplantibacillus plantarum Ameliorated Morphological Damage and Barrier Dysfunction and Reduced Apoptosis and Ferroptosis in the Jejunum of Oxidatively Stressed Piglets. Animals (Basel) 2024; 14:3335. [PMID: 39595387 PMCID: PMC11591186 DOI: 10.3390/ani14223335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress induces apoptosis and ferroptosis, leading to intestinal injury of piglets. Lactiplantibacillus plantarum P8 (P8) has antioxidant capacity, but its roles in intestinal apoptosis and ferroptosis remain unclear. Here, 24 weaned piglets were assigned to three treatments: control (Con), diquat injection (DQ), and P8 supplementation + DQ injection (DQ + P8). The results showed that the increased jejunal oxidative stress, jejunal morphology impairment, and barrier dysfunction in the DQ-treated piglets were decreased by P8 supplementation. TUNEL and apoptosis-related gene expressions showed increased jejunal apoptosis of DQ-treated piglets; however, reduced apoptosis was observed in the DQ + P8 group. In addition, the mitochondrial morphology and ferroptosis-related gene expressions indicated elevated jejunal ferroptosis in the DQ-treated piglets, and the DQ + P8 treatment attenuated the ferroptosis. Transcriptome identified various differentially expressed genes (DEGs) between different treatments. KEGG analysis indicated that the DEGs were enriched in the PI3K-AKT, NF-κB, and apoptosis pathways. The expressions of key DEGs and key proteins in the PI3K-AKT and NF-κB pathways were further verified. In summary, our results indicate that P8 supplementation ameliorated jejunal oxidative stress, morphological damage, barrier dysfunction, apoptosis, and ferroptosis in the DQ-treated piglets. Moreover, the beneficial effect of P8 may be related to the regulation of PI3K/AKT and NF-κB pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (J.Y.); (W.X.); (Z.W.); (H.L.); (K.Z.); (J.Z.)
| |
Collapse
|
2
|
Chen C, Qu M, Li G, Wan G, Liu P, Omar SM, Mei W, Hu Z, Zhou Q, Xu L. Dietary Tributyrin Improves Growth Performance, Meat Quality, Muscle Oxidative Status, and Gut Microbiota in Taihe Silky Fowls under Cyclic Heat Stress. Animals (Basel) 2024; 14:3041. [PMID: 39457971 PMCID: PMC11504407 DOI: 10.3390/ani14203041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress adversely affects poultry production and meat quality, leading to economic losses. This study aimed to investigate the effects of adding tributyrin on growth performance, meat quality, muscle oxidative status, and gut microbiota of Taihe silky fowls under cyclic heat stress (CHS) conditions. In this study, 120-day-old Taihe silky fowls (male) were randomly divided into six dietary treatments. These treatments included a normal control treatment (NC, fed a basal diet), a heat stress control treatment (HS, fed a basal diet), and HS control treatments supplemented with 0.04%, 0.08%, 0.16%, and 0.32% tributyrin, respectively. The NC treatment group was kept at 24 ± 1 °C, while the HS treatment birds were exposed to 34 ± 1 °C for 8 h/d for 4 weeks. Results showed that CHS decreased growth performance and compromised the meat quality of broilers (p < 0.05). However, tributyrin supplementation improved ADG and FCR in broilers exposed to CHS (p < 0.05). Additionally, tributyrin supplementation resulted in increased shear force value and GSH-Px activity, as well as a decrease in drip loss, ether extract content, and MDA content of the breast muscle in broilers under CHS (p < 0.05). Furthermore, tributyrin supplementation up-regulated the mRNA expressions of Nrf2, NQO1, HO-1, SOD, and GSH-Px of the breast muscle in broilers exposed to CHS (p < 0.05). Based on these positive effects, the study delved deeper to investigate the impact of 0.16% tributyrin supplementation (HS + 0.16%T) on the cecum microbiota. The HS + 0.16%T treatment showed an increase in the relative abundance of Rikenellaceae_RC9_gut_group (p < 0.05) and a trend towards an increase in Lactobacillus (p = 0.096) compared to the HS treatment. The results indicate that supplementation successfully improved the growth performance and meat quality of Taihe silky fowls. Furthermore, tributyrin supplementation, particularly at levels of 0.16%, improved meat quality by enhancing muscle antioxidant capacity, which is believed to be associated with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (M.Q.); (G.L.); (G.W.); (P.L.); (S.M.O.); (W.M.); (Z.H.); (Q.Z.)
| |
Collapse
|
3
|
Zhang H, Xiang X, Wang C, Li T, Xiao X, He L. Different effects of acute and chronic oxidative stress on the intestinal flora and gut-liver axis in weaned piglets. Front Microbiol 2024; 15:1414486. [PMID: 38952442 PMCID: PMC11215049 DOI: 10.3389/fmicb.2024.1414486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Oxidative stress plays a pivotal role in modulating the balance of intestinal flora and the gut-liver axis, while also serving as a key determinant of the growth potential of weaned piglets. However, few studies have subdivided and compared acute and chronic oxidative stress. Methods In this study, an intestinal model of acute oxidative stress in weaned piglets using paraquat (PQ) and a chronic oxidative stress model using D-galactosa in weaned piglets were conducted. And we further systematically compare their effects. Results Both acute and chronic oxidative stress models impaired intestinal barrier function and liver function. Chronic stress caused by D-galactose can result in severe redox dysregulation, while acute stress caused by paraquat can lead to inflammation and liver damage. Additionally, the components involved in the CAR pathway were expressed differently. Chronic or acute oxidative stress can reduce the diversity and composition of intestinal flora. In the PQ group, the richness of Mogibacterium and Denitratisoma improved, but in the D-gal group, the richness of Catenisphaera and Syntrophococcus increased. Discussion Not only does this research deepen our understanding of the effects of acute and chronic oxidative stress on intestinal functions, but it also characterizes characteristic changes in the gut flora, potentially identifying novel therapeutic targets and opening new avenues for future research.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuan Xiang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xuping Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
4
|
Zahran SA, Mansour SM, Ali AE, Kamal SM, Römling U, El-Abhar HS, Ali-Tammam M. Sunset Yellow dye effects on gut microbiota, intestinal integrity, and the induction of inflammasomopathy with pyroptotic signaling in male Wistar rats. Food Chem Toxicol 2024; 187:114585. [PMID: 38490351 DOI: 10.1016/j.fct.2024.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Although concern persists regarding possible adverse effects of consumption of synthetic azo food dyes, the mechanisms of any such effects remain unclear. We have tested the hypothesis that chronic consumption of the food dye Sunset Yellow (SY) perturbs the composition of the gut microbiota and alters gut integrity. Male rats were administered SY orally for 12 weeks. Analysis of fecal samples before and after dye administration demonstrated SY-induced microbiome dysbiosis. SY treatment reduced the abundance of beneficial taxa such as Treponema 2, Anaerobiospirillum, Helicobacter, Rikenellaceae RC9 gut group, and Prevotellaceae UCG-003, while increasing the abundance of the potentially pathogenic microorganisms Prevotella 2 and Oribacterium. Dysbiosis disrupted gut integrity, altering the jejunal adherens junction complex E-cadherin/β-catenin and decreasing Trefoil Factor (TFF)-3. SY administration elevated LPS serum levels, activated the inflammatory inflammasome cascade TLR4/NLRP3/ASC/cleaved-activated caspase-1 to mature IL-1β and IL-18, and activated caspase-11 and gasdermin-N, indicating pyroptosis and increased intestinal permeability. The possibility that consumption of SY by humans could have effects similar to those that we have observed in rats should be examined.
Collapse
Affiliation(s)
- Sara Ahmed Zahran
- Department of Microbiology& Immunology, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt.
| | - Suzan Mohamed Mansour
- Departments of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| | - Amal Emad Ali
- Department of Microbiology& Immunology, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt.
| | - Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177, Stockholm, Sweden.
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177, Stockholm, Sweden.
| | - Hanan Salah El-Abhar
- Departments of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt.
| | - Marwa Ali-Tammam
- Department of Microbiology& Immunology, Faculty of Pharmacy, Future University, 12311, Cairo, Egypt.
| |
Collapse
|