1
|
Wang H, Wu H, Zhang W, Jiang J, Qian H, Man C, Gao H, Chen Q, Du L, Chen S, Wang F. Development and validation of a 5K low-density SNP chip for Hainan cattle. BMC Genomics 2024; 25:873. [PMID: 39294563 PMCID: PMC11409743 DOI: 10.1186/s12864-024-10753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND This study aimed to design and develop a 5K low-density liquid chip for Hainan cattle utilizing targeted capture sequencing technology. The chip incorporates a substantial number of functional single nucleotide polymorphism (SNP) loci derived from public literature, including SNP loci significantly associated with immunity, heat stress, meat quality, reproduction, and other traits. Additionally, SNPs located in the coding regions of immune-related genes from the Bovine Genome Variation Database (BGVD) and Hainan cattle-specific SNP loci were included. RESULTS A total of 5,293 SNPs were selected, resulting in 9,837 DNA probes with a coverage rate of 85.69%, thereby creating a Hainan cattle-specific 5K Genotyping by Target Sequencing (GBTS) liquid chip. Evaluation with 152 cattle samples demonstrated excellent clustering performance and a detection rate ranging from 96.60 to 99.07%, with 94.5% of SNP sites exhibiting polymorphism. The chip achieved 100% gender coverage and displayed a heterozygosity rate between 14.20% and 29.65%, with a repeatability rate of 99.65-99.85%. Analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed the potential regulatory roles of exonic SNPs in immune response pathways. CONCLUSION The development and validation of the 5K GBTS liquid chip for Hainan cattle represent a valuable tool for genome analysis and genetic diversity assessment. Furthermore, it facilitates breed identification, gender determination, and kinship analysis, providing a foundation for the efficient utilization and development of local cattle genetic resources.
Collapse
Affiliation(s)
- Huan Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hui Wu
- Xinjiang Barkol Kazakh Autonomous County Animal Husbandry Veterinary Station, Barkol Kazakh Autonomous County, Xinjiang, PR China
| | - Wencan Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Junming Jiang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hejie Qian
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hongyan Gao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China.
| |
Collapse
|
2
|
Nix JL, Schettini GP, Biase FH. Sexing of cattle embryos using RNA-sequencing data or polymerase chain reaction based on a complete sequence of cattle chromosome Y. Front Genet 2023; 14:1038291. [PMID: 37077537 PMCID: PMC10106624 DOI: 10.3389/fgene.2023.1038291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
When necessary, RNA-sequencing data or polymerase chain reaction (PCR) assays can be used to determine the presence of the chromosome Y (ChrY) in samples. This information allows for biological variation due to sexual dimorphism to be studied. A prime example is when researchers conduct RNA-sequencing of single embryos, or conceptuses, prior to the development of gonads. A recent publication of a complete sequence of the ChrY has removed limitations for the development of these procedures in cattle, otherwise imposed by the absence of a ChrY in the reference genome. Using the sequence of the cattle ChrY and transcriptome data, we conducted a systematic search for genes in the ChrY that are exclusively expressed in male tissues. The genes ENSBIXG00000029763, ENSBIXG00000029774, ENSBIXG00000029788, and ENSBIXG00000029892 were consistently expressed across male tissues and lowly expressed or absent in female samples. We observed that the cumulative values of counts per million were 2688-fold greater in males than the equivalent values in female samples. Thus, we deemed these genes suitable for the sexing of samples using RNA-sequencing data. We successfully used this set of genes to infer the sex of 22 cattle blastocysts (8 females and 14 males). Additionally, the completed sequence of the cattle ChrY has segments in the male-specific region that are not repeated. We designed a pair of oligonucleotides that targets one of these non-repeated regions in the male-specific sequence of the ChrY. Using this pair of oligonucleotides, in a multiplexed PCR assay with oligonucleotides that anneal to an autosome chromosome, we accurately identified the sex of cattle blastocysts. We developed efficient procedures for the sexing of samples in cattle using either transcriptome data or their DNA. The procedures using RNA-sequencing will greatly benefit researchers who work with samples limited in cell numbers which are only sufficient to produce transcriptome data. The oligonucleotides used for the accurate sexing of samples using PCR are transferable to other cattle tissue samples.
Collapse
Affiliation(s)
| | | | - Fernando Henrique Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
3
|
Molecular Cytogenetics in Domestic Bovids: A Review. Animals (Basel) 2023; 13:ani13050944. [PMID: 36899801 PMCID: PMC10000107 DOI: 10.3390/ani13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.
Collapse
|
4
|
Gokulakrishnan P, Kumar RR, Sharma BD, Mendiratta SK, Malav O, Sharma D. Determination of sex origin of meat and meat products on the DNA basis: a review. Crit Rev Food Sci Nutr 2014; 55:1303-14. [PMID: 24915321 DOI: 10.1080/10408398.2012.690095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sex determination of domestic animal's meat is of potential value in meat authentication and quality control studies. Methods aiming at determining the sex origin of meat may be based either on the analysis of hormone or on the analysis of nucleic acids. At the present time, sex determination of meat and meat products based on hormone analysis employ gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS), and enzyme-linked immunosorbent assay (ELISA). Most of the hormone-based methods proved to be highly specific and sensitive but were not performed on a regular basis for meat sexing due to the technical limitations or the expensive equipments required. On the other hand, the most common methodology to determine the sex of meat is unquestionably traditional polymerase chain reaction (PCR) that involves gel electrophoresis of DNA amplicons. This review is intended to provide an overview of the DNA-based methods for sex determination of meat and meat products.
Collapse
Affiliation(s)
- Palanisamy Gokulakrishnan
- a Division of Livestock Products Technology , Indian Veterinary Research Institute , Izatnagar, Bareilly , Uttar Pradesh , India
| | | | | | | | | | | |
Collapse
|
6
|
Yang H, Zhong F, Yang Y, Wang X, Liu S, Zhu B. Sex determination of bovine preimplantation embryos by oligonucleotide microarray. Anim Reprod Sci 2013; 139:18-24. [PMID: 23664652 DOI: 10.1016/j.anireprosci.2013.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 01/27/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
The aim has been to set up a rapid and accurate microarray assay using sandwich mode for sex determination of bovine preimplantation embryos. Twelve sequence-specific oligonucleotide capture probes used to discriminate 12 samples were spotted onto the aldehyde-modified glass slides by Arrayer. The 2 recognition probes used to identify coding regions of the sex-determining region of the Y chromosome gene (SRY) and β-casein (CSN2) reference gene were coupled with biotin. The assay was optimized by using genomic DNA extracted from blood samples of known sex individuals. Polymerase chain reaction (PCR) was used to amplify the fragments in the HMG box region of SRY gene and CSN2 gene with sequence-specific primers. The sex of samples was identified by detecting both the SRY and CSN2 genes simultaneously in 2 reaction cells of microarrays, with the male having SRY and CSN2 signals and the female only CSN2. The sex of 20 bovine preimplantation embryos was determined by oligonucleotide microarray. The protocol was run with a blind test that showed a 100% (82/82) specificity and accuracy in sexing of leukocytes. The bovine embryos were transferred into 20 bovine recipients, with a pregnant rate of 40% (8/20). Three calves were born at term, and 5 fetuses were miscarried. Their sexes were fully in accordance with the embryonic sex predetermination predicted by oligonucleotide microarray. This suggests that the oligonucleotide microarray method of SRY gene analysis can be used in early sex prediction of bovine embryos in breeding programs.
Collapse
Affiliation(s)
- Hua Yang
- The Breed & Biotechnology Key Laboratory of Sheep in Bingtuan, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, PR China.
| | | | | | | | | | | |
Collapse
|
7
|
Gokulakrishnan P, Kumar RR, Sharma BD, Mendiratta SK, Sharma D. Sex Determination of Cattle Meat by Polymerase Chain Reaction Amplification of the DEAD Box Protein (DDX3X/DDX3Y) Gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:733-7. [PMID: 25049620 PMCID: PMC4093110 DOI: 10.5713/ajas.2012.12003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/17/2012] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
Abstract
Determination of sex origin of cattle meat by fast and reliable molecular methods is an important measure to ensure correct allocation of export refunds particularly in European countries and also female cattle (cow) slaughter is legally banned in India because of religious beliefs. Based on the DEAD box protein gene located on the X and Y chromosomes, 2 pair of primers were designed and the system of PCR was optimized. Upon PCR amplification, male tissue showed 2 bands, while female tissue resulted in only one band. The accuracy and specificity of the primers was assessed using DNA template extracted from cattle meat of known sex. The protocol was subjected to a blind test and showed 100% concordance, proving its accuracy and reliability.
Collapse
Affiliation(s)
- P Gokulakrishnan
- Genome Mapping Laboratory, Central Avian Research Institute, Izatnagar, Bareilly (U.P.) 243 122, India
| | - R R Kumar
- Genome Mapping Laboratory, Central Avian Research Institute, Izatnagar, Bareilly (U.P.) 243 122, India
| | - B D Sharma
- Genome Mapping Laboratory, Central Avian Research Institute, Izatnagar, Bareilly (U.P.) 243 122, India
| | - S K Mendiratta
- Genome Mapping Laboratory, Central Avian Research Institute, Izatnagar, Bareilly (U.P.) 243 122, India
| | - D Sharma
- Genome Mapping Laboratory, Central Avian Research Institute, Izatnagar, Bareilly (U.P.) 243 122, India
| |
Collapse
|
9
|
Ballin NZ. Authentication of meat and meat products. Meat Sci 2010; 86:577-87. [PMID: 20685045 DOI: 10.1016/j.meatsci.2010.06.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/30/2010] [Accepted: 06/03/2010] [Indexed: 11/26/2022]
Abstract
In recent years, interest in meat authenticity has increased. Many consumers are concerned about the meat they eat and accurate labelling is important to inform consumer choice. Authentication methods can be categorised into the areas where fraud is most likely to occur: meat origin, meat substitution, meat processing treatment and non-meat ingredient addition. Within each area the possibilities for fraud can be subcategorised as follows: meat origin-sex, meat cuts, breed, feed intake, slaughter age, wild versus farmed meat, organic versus conventional meat, and geographic origin; meat substitution-meat species, fat, and protein; meat processing treatment-irradiation, fresh versus thawed meat and meat preparation; non-meat ingredient addition-additives and water. Analytical methods used in authentication are as diverse as the authentication problems, and include a diverse range of equipment and techniques. This review is intended to provide an overview of the possible analytical methods available for meat and meat products authentication. In areas where no authentication methods have been published, possible strategies are suggested.
Collapse
Affiliation(s)
- N Z Ballin
- Department of Food Chemistry, Regional Veterinary and Food Control Authority, Danish Veterinary and Food Administration, Soendervang 4, DK-4100 Ringsted, Denmark.
| |
Collapse
|