1
|
Przybył BJ, Szlis M, Wójcik-Gładysz A. Brain-derived neurotrophic factor (BDNF) affects the activity of the gonadotrophic axis in sheep. Horm Behav 2021; 131:104980. [PMID: 33872927 DOI: 10.1016/j.yhbeh.2021.104980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to examine the hypothesis that BDNF modulates the activity of the gonadotrophic axis in sheep. Central infusions of BDNF were administered to sexually mature Polish Merino sheep. The sheep were randomly divided into three groups: the control group received intracerebroventricular (ICV) infusions of the vehicle, the BDNF 10 group received ICV infusions of BDNF at 10 μg/480 μL/day, and the BDNF 60 group was infused with BDNF at 60 μg/480 μL/day. A series of four infusions on three consecutive days was performed. Blood samples were collected on days 0 and 3 of the infusions. Immediately after the experiment, all the sheep were slaughtered, and selected structures of the hypothalamus and pituitaries were collected for Real Time RT-qPCR analysis. The collected plasma samples, as well as parts of pituitaries were stored for radioimmunoassay analysis of LH and FSH. Central treatment with exogenous BDNF stimulated GnRH mRNA expression in the preoptic area, as well as GnRH-R mRNA in the pituitary. Furthermore, substantial changes in the KNDy mRNA expression in the mediobasal hypothalamus were observed after the ICV BDNF administration. Additionally, central BDNF infusion caused a decrease in LH concentration and a simultaneous increase in FSH concentration in peripheral blood. Neither pulse amplitude nor pulse frequency for any gonadotrophin was affected in both groups of sheep that received BDNF infusion. Our results revealed that exogenous BDNF affects GnRH and KNDy gene expression and changes in the LH and FSH pituitary cell secretory activities. These findings suggest that BDNF may participate in the mechanism modulating the activity of the gonadotrophic axis at the central level in female sheep.
Collapse
Affiliation(s)
- Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland.
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| |
Collapse
|
2
|
Szlis M, Wójcik-Gładysz A, Przybył BJ. Central obestatin administration affect the LH and FSH secretory activity in peripubertal sheep. Theriogenology 2020; 145:10-17. [PMID: 31982689 DOI: 10.1016/j.theriogenology.2020.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Obestatin - a 23 amino acid peptide is synthesized as another product of the ghrl gene and its synthesis occurs mainly in gastric mucosa cells. This hormone is involved in complex gut-brain neurohormonal networks, thereby can participates in the modulation of gonadotrophic axis activity. The aim of this study was to investigate the consequence of intracerebroventricular infusions of obestatin on LH and FSH pituitary cells secretory activity in peripubertal female sheep. Animals were randomly divided into two groups: the control group (n = 14) received intracerebroventricular infusions of Ringer-Lock solution (120 μL h-1), and the obestatin group (n = 14) was infused with obestatin (25 μg/120 μL h-1) diluted in Ringer-Lock solution. A series of four infusions was performed on three consecutive days. Blood samples were collected on day 0 and day 3. The sheep were slaughtered immediately after the end of the experiment. For molecular biological analysis, pituitaries from 7 sheep from each group (n = 7 + 7) were prepared and frozen in liquid nitrogen immediately after collection and then stored at -80 °C until Real Time RT-qPCR and RIA analyzes. For immunohistochemical analysis, pituitary tissues from the remaining animals (n = 7 + 7) was fixed in situ for further examination. Real-Time qPCR and immunohistochemistry analyses revealed substantial changes in the LH and FSH pituitary cells secretory activity in obestatin-infused sheep. Exogenous obestatin administration reduced LHβ mRNA expression and increased the accumulation of immunoreactive LH in gonadotrophic cells of the adenohypophysis. These changes were accompanied by a decrease in the mean LH concentration in the peripheral blood resulting from the lower LH pulse amplitude. Moreover, an increase in both FSHβ mRNA expression and FSH immunoreactivity and amount in pituitary cells were noted, while mean blood FSH concentration remained unchanged after obestatin treatment. The obtained results showed that exogenous obestatin affected LH secretory activity at the level of protein synthesis, accumulation and release as well as obestatin increase FSHβ mRNA expression and accumulation of this hormone but at the same time have no effect on FSH release to blood. Thus, obestatin can participate in the neuroendocrine network, which modulates gonadotrophic axis activity in sheep.
Collapse
Affiliation(s)
- Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
3
|
Almabhouh FA, Md Mokhtar AH, Malik IA, Aziz NAAA, Durairajanayagam D, Singh HJ. Leptin and reproductive dysfunction in obese men. Andrologia 2019; 52:e13433. [DOI: 10.1111/and.13433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Ifrah Alam Malik
- Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
| | | | | | - Harbindar Jeet Singh
- Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
- I‐PerFForm Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
| |
Collapse
|
4
|
Wójcik-Gładysz A, Szlis M, Przybył BJ, Polkowska J. Obestatin may affect the GnRH/KNDy gene network in sheep hypothalamus. Res Vet Sci 2019; 123:51-58. [DOI: 10.1016/j.rvsc.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
5
|
Leptin regulates neuropeptides associated with food intake and GnRH secretion. ANNALES D'ENDOCRINOLOGIE 2019; 80:38-46. [DOI: 10.1016/j.ando.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
|
6
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
7
|
Szlis M, Polkowska J, Skrzeczyńska E, Przybył BJ, Wójcik-Gładysz A. Does obestatin modulate the hypothalamic appetite-regulating network in peripubertal sheep? J Anim Physiol Anim Nutr (Berl) 2018; 102:690-700. [DOI: 10.1111/jpn.12879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/28/2018] [Indexed: 12/12/2022]
Affiliation(s)
- M. Szlis
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - J. Polkowska
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - E. Skrzeczyńska
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - B. J. Przybył
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - A. Wójcik-Gładysz
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| |
Collapse
|
8
|
Obestatin stimulates the somatotrophic axis activity in sheep. Brain Res 2018; 1678:278-287. [DOI: 10.1016/j.brainres.2017.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023]
|
9
|
Venancio JC, Margatho LO, Rorato R, Rosales RRC, Debarba LK, Coletti R, Antunes-Rodrigues J, Elias CF, Elias LLK. Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice. Endocrinology 2017; 158:3929-3942. [PMID: 28938405 PMCID: PMC5695829 DOI: 10.1210/en.2017-00452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/30/2017] [Indexed: 11/19/2022]
Abstract
Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD.
Collapse
Affiliation(s)
- Jade Cabestre Venancio
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Lisandra Oliveira Margatho
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Rodrigo Rorato
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | | | - Lucas Kniess Debarba
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Ricardo Coletti
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lucila Leico K. Elias
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| |
Collapse
|
10
|
Luo Q, Li W, Li M, Zhang X, Zhang H. Leptin/leptinR-kisspeptin/kiss1r-GnRH pathway reacting to regulate puberty onset during negative energy balance. Life Sci 2016; 153:207-12. [DOI: 10.1016/j.lfs.2016.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/30/2022]
|
11
|
Polkowska J, Cieślak M, Wańkowska M, Wójcik-Gładysz A. The effect of short fasting on the hypothalamic neuronal system of kisspeptin in peripubertal female lambs. Anim Reprod Sci 2015; 159:184-90. [PMID: 26152777 DOI: 10.1016/j.anireprosci.2015.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/19/2015] [Accepted: 06/21/2015] [Indexed: 11/28/2022]
Abstract
Changes in the metabolic state induced by feed restrictions have a negative effect on the reproduction in mammals and result in the delayed puberty onset. Kisspeptin (kp) has been demonstrated as a pivotal regulator of GnRH/LH secretion during puberty. To elucidate the involvement of kp in the hypothalamic secretory function in altered metabolic state, the expression of kp protein was investigated in peripubertal female lambs after short fasting. The experiment was conducted on immature 32-weeks old Merino lambs fed standard diet (n=5) or fasted for 72h (n=5). The localization and expression of kp was evaluated using immunohistochemistry. Serum LH concentration was determined using radioimmunology. In the hypothalami of fasted sheep, the number of kp perikarya and the percent of density of neuronal kp network in the caudal part of the nucleus arcuatus were significantly less (P<0.001) than in standard fed lambs. The decrease of kp axons throughout areas extending from area preoptica to medial basal hypothalamus and in the median eminence in fasted lambs compared to standard fed ones was observed. Plasma LH concentrations and amplitude of pulses decreased (P<0.05) after 3 days of fasting compared to standard fed group. The decrease of the kp expression is likely due to diminished kp protein synthesis, and its storage in the neurons. In summary, the data are the first to demonstrate interactions between metabolic status and kp neuronal system in lambs before puberty, and suggest that kp neurons may represent a link between metabolic signals and central control of reproduction.
Collapse
Affiliation(s)
- Jolanta Polkowska
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland.
| | - Magdalena Cieślak
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Marta Wańkowska
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
12
|
Ozcan M, Saatci T, Ayar A, Canpolat S, Kelestimur H. Leptin activates cytosolic calcium responses through protein kinase-C dependent mechanism in immortalized RFamide-related peptide-3 neurons. Brain Res 2015; 1601:8-14. [DOI: 10.1016/j.brainres.2014.12.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
|
13
|
Ratra DV, Elias CF. Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. J Chem Neuroanat 2014; 61-62:233-8. [PMID: 24915437 DOI: 10.1016/j.jchemneu.2014.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 01/31/2023]
Abstract
The adipocyte-derived hormone leptin plays a critical role as a metabolic cue for the reproductive system. Conditions of low leptin levels observed in negative energy balance and loss-of-function mutations of leptin or leptin receptor genes are characterized by decreased fertility. In recent years, advances have been made for identifying possible hypothalamic neurons relaying leptin's neuroendocrine control of reproductive function. Studies from different laboratories have demonstrated that leptin action in the hypothalamo-pituitary-gonadal (HPG) axis is exerted via hypothalamic interneurons regulating gonadotropin-releasing hormone (GnRH) cells, oppose to direct action on GnRH neurons. Following this observation, studies focused on identifying leptin responsive interneurons. Using a Cre-loxP system to re-express or delete the leptin receptor long form (LepRb) from kisspeptin neurons, our laboratory found that leptin's action on kiss1 cells is neither required nor sufficient for leptin's role in reproductive function. Endogenous re-expression of LepRb however, in glutamatergic neurons of the ventral premammilary nucleus (PMV) or ablation of agouti-related protein (AgRP) neurons from leptin signaling-deficient mice are both sufficient to induce puberty and improve fertility. Recent studies have also shown that leptin action in first order GABAergic neurons is required for fertility. Together, these studies begin to delineate key neuronal populations involved in leptin's action in reproduction. In this review, we discuss recent advances made in the field and highlight the questions yet to be answered.
Collapse
Affiliation(s)
- Dhirender V Ratra
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Maidin MS, Blackberry M, Milton J, Hawken P, Martin G. Nutritional Supplements, Leptin, Insulin and Progesterone in Female Australian Cashmere Goats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.apcbee.2014.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Elias CF. A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction. Am J Physiol Regul Integr Comp Physiol 2013; 306:R1-9. [PMID: 24196667 DOI: 10.1152/ajpregu.00444.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The remarkable development and refinement of the Cre-loxP system coupled with the nonstop production of new mouse models and virus vectors have impelled the growth of various fields of investigation. In this article, I will discuss the data collected using these genetic tools in our area of interest, giving specific emphasis to the identification of the neuronal populations that relay leptin action in reproductive physiology. A series of mouse models that allow manipulation of the leptin receptor gene have been generated. Of those, I will discuss the use of two models of leptin receptor gene reexpression (LepR(neo/neo) and LepR(loxTB/loxTB)) and one model of leptin signaling blockade (LepR(flox/flox)). I will also highlight the differences of using stereotaxic delivery of virus vectors expressing DNA-recombinases (Flp and Cre) and mouse models expressing Cre-recombinase. Our findings indicate that leptin action in the ventral premammillary nucleus is sufficient, but not required, for leptin action in reproduction and that leptin action in Kiss1 neurons arises after pubertal maturation; therefore, direct leptin signaling in Kiss1 neurons is neither required nor sufficient for the permissive action of leptin in pubertal development. It also became evident that the full action of leptin in the reproductive neuroendocrine axis requires the engagement of an integrated circuitry, yet to be fully unveiled.
Collapse
Affiliation(s)
- Carol F Elias
- Department of Molecular and Integrative Physiology and Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Daniel JA, Foradori CD, Whitlock BK, Sartin JL. Hypothalamic Integration of Nutrient Status and Reproduction in the Sheep. Reprod Domest Anim 2013; 48 Suppl 1:44-52. [DOI: 10.1111/rda.12227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci 2012; 70:841-62. [PMID: 22851226 PMCID: PMC3568469 DOI: 10.1007/s00018-012-1095-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Leptin is an adipocyte-derived hormone involved in a myriad of physiological process, including the control of energy balance and several neuroendocrine axes. Leptin-deficient mice and humans are obese, diabetic, and display a series of neuroendocrine and autonomic abnormalities. These individuals are infertile due to a lack of appropriate pubertal development and inadequate synthesis and secretion of gonadotropins and gonadal steroids. Leptin receptors are expressed in many organs and tissues, including those related to the control of reproductive physiology (e.g., the hypothalamus, pituitary gland, and gonads). In the last decade, it has become clear that leptin receptors located in the brain are major players in most leptin actions, including reproduction. Moreover, the recent development of molecular techniques for brain mapping and the use of genetically modified mouse models have generated crucial new findings for understanding leptin physiology and the metabolic influences on reproductive health. In the present review, we will highlight the new advances in the field, discuss the apparent contradictions, and underline the relevance of this complex physiological system to human health. We will focus our review on the hypothalamic circuitry and potential signaling pathways relevant to leptin’s effects in reproductive control, which have been identified with the use of cutting-edge technologies of molecular mapping and conditional knockouts.
Collapse
Affiliation(s)
- Carol F Elias
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Y6-220B, Dallas, TX, 75390-9077, USA.
| | | |
Collapse
|
18
|
Abstract
Fat affects meat quality, value and production efficiency as well as providing energy reserves for pregnancy and lactation in farm livestock. Leptin, the adipocyte product of the obese (ob) gene, was quickly seen as a predictor of body fat content in animals approaching slaughter and an aid to assessing reproductive readiness in females. Its participation in inflammation and immune responses that help animals survive infection and trauma has clear additional relevance to meat and milk production. Furthermore, almost a decade of discoveries of nucleotide polymorphisms in the leptin and leptin receptor genes has suggested useful applications relating to feed intake regulation, the efficiency of feed use, the composition of growth, the timing of puberty, mammogenesis and mammary gland function and fertility in cattle, pigs and poultry. The current review attempts to summarise where research has taken us in each of these aspects and speculates on where future research might lead.
Collapse
|
19
|
Elias CF. Leptin action in pubertal development: recent advances and unanswered questions. Trends Endocrinol Metab 2012; 23:9-15. [PMID: 21978495 PMCID: PMC3251729 DOI: 10.1016/j.tem.2011.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022]
Abstract
In recent years we have witnessed a considerable advance in the understanding of the processes involved in pubertal development. This is partially due to the discovery of the kisspeptin system and its fundamental role in the control of reproductive physiology. In addition, the suspected relationship between increasing rates of childhood obesity and the apparent reduction in the age of puberty onset in girls has generated a growing interest in identifying the mechanisms by which nutrition may influence reproductive maturation. This review will focus on recent data unveiling the sites of leptin action in pubertal development that were generated using novel molecular techniques and genetically engineered mouse models. It will also emphasize areas of contention and the many relevant questions that remain unanswered.
Collapse
Affiliation(s)
- Carol F Elias
- Department of Internal Medicine, Division of Hypothalamic Research and Green Center for Reproductive Biology Sciences, University of Texas Southwestern (UTSW) Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Donato J, Cravo RM, Frazão R, Gautron L, Scott MM, Lachey J, Castro IA, Margatho LO, Lee S, Lee C, Richardson JA, Friedman J, Chua S, Coppari R, Zigman JM, Elmquist JK, Elias CF. Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest 2010; 121:355-68. [PMID: 21183787 DOI: 10.1172/jci45106] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/03/2010] [Indexed: 12/18/2022] Open
Abstract
Studies in humans and rodents indicate that a minimum amount of stored energy is required for normal pubertal development. The adipocyte-derived hormone leptin is a key metabolic signal to the neuroendocrine reproductive axis. Humans and mice lacking leptin or the leptin receptor (LepR) (ob/ob and db/db mice, respectively) are infertile and fail to enter puberty. Leptin administration to leptin-deficient subjects and ob/ob mice induces puberty and restores fertility, but the exact site or sites of leptin action are unclear. Here, we found that genetic deletion of LepR selectively from hypothalamic Kiss1 neurons in mice had no effect on puberty or fertility, indicating that direct leptin signaling in Kiss1 neurons is not required for these processes. However, bilateral lesions of the ventral premammillary nucleus (PMV) of ob/ob mice blunted the ability of exogenous leptin to induce sexual maturation. Moreover, unilateral reexpression of endogenous LepR in PMV neurons was sufficient to induce puberty and improve fertility in female LepR-null mice. This LepR reexpression also normalized the increased hypothalamic GnRH content characteristic of leptin-signaling deficiency. These data suggest that the PMV is a key site for leptin's permissive action at the onset of puberty and support the hypothesis that the multiple actions of leptin to control metabolism and reproduction are anatomically dissociated.
Collapse
Affiliation(s)
- Jose Donato
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|