1
|
Osycka-Salut CE, Waremkraut M, Garaguso R, Piga E, Martínez-León E, Marín-Briggiler CI, Gervasi MG, Navarro M, Visconti PE, Buffone MG, Mutto AA, Krapf D. Treatment of cryopreserved bovine sperm with calcium ionophore A23187 increases in vitro embryo production. Theriogenology 2024; 229:1-7. [PMID: 39133991 DOI: 10.1016/j.theriogenology.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
After ejaculation, mammalian sperm undergo a series of molecular events conducive to the acquisition of fertilizing competence. These events are collectively known as capacitation and involve acrosomal responsiveness and a vigorous sperm motility called hyperactivation. When mimicked in the laboratory, capacitating bovine sperm medium contains bicarbonate, calcium, albumin and heparin, among other components. In this study, we aimed at establishing a new capacitation protocol for bovine sperm, using calcium ionophore. Similar to our findings using mouse sperm, bovine sperm treated with Ca2+ ionophore A23187 were quickly immobilized. However, these sperm initiated capacitation after ionophore removal in fresh medium without heparin, and independent of the Protein Kinase A. When A23187-treated sperm were used on in vitro fertilization (IVF) procedures without heparin, eggs showed cleavage rates similar to standardized IVF protocols using heparin containg synthetic oviduct fluid (IVF-SOF). However, when A23187 pre-treated sperm were further used for inseminating eggs in complete IVF-SOF-heparin, a significantly higher percentage of embryo development was observed, suggesting a synergism between two different signaling pathways during bovine sperm capacitation. These results have the potential to improve current protocols for bovine IVF that could also be applied in other species of commercial interest.
Collapse
Affiliation(s)
- C E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - M Waremkraut
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - R Garaguso
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - E Piga
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Santa Fe S2000EZP, Argentina
| | - E Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas "José de San Martín", CABA, 1120, Argentina
| | - C I Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - M G Gervasi
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - M Navarro
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - P E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA 01003, USA
| | - M G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - A A Mutto
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina.
| | - D Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Santa Fe S2000EZP, Argentina.
| |
Collapse
|
2
|
Upadhyay VR, Roy AK, Pandita S, Raval K, Patoliya P, Ramesh V, Dewry RK, Yadav HP, Mohanty TK, Bhakat M. Optimized addition of nitric oxide compounds in semen extender improves post-thaw seminal attributes of Murrah buffaloes. Trop Anim Health Prod 2023; 55:47. [PMID: 36702975 DOI: 10.1007/s11250-023-03474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Semen dilution and cryopreservation alter the homogeneity of seminal plasma, resulting in a non-physiological redox milieu and consequently poor sperm functionality. Considering the concentration-specific bimodal action of nitric oxide (NO) in the regulation of sperm functions, cryopreservation media supplemented with optimized concentrations can improve the semen attributes. The present study aimed to evaluate the effect of adding an optimized concentration of sodium nitroprusside (SNP) and N-nitro-L-arginine methyl ester (L-NAME) in an extender on in vitro semen quality. An aliquot of semen samples (n = 32) from Murrah buffalo bulls (n = 8) was divided into control (C) and treatment (T-I: SNP in extender at 1 µmol/L; T-II: L-NAME in extender at 10 µmol/L). Fresh semen quality parameters showed no significant difference at 0 h except for the structural integrity in the T-II group. Post-thaw semen quality parameters and sperm kinematics using computer-aided sperm analysis (CASA) revealed significantly higher (p < 0.05) cryoresistance in the treatment groups. Viability, acrosome integrity, and membrane integrity were significantly higher (p < 0.05) in both treatment groups; however, the results were pervasive in T-II. Lower abnormal spermatozoa were observed in both T-I and T-II. SNP supplementation led to a significant rise (p < 0.05) in NO, whereas L-NAME reduced the NO concentration in post-thawed samples, which was directly correlated with different sperm functionality and associated biomarkers viz. total antioxidant capacity (TAC) and thiobarbituric acid reactive substance (TBARS). It was concluded that the cryopreservation media supplemented with SNP and L-NAME at 1 µmol/L and 10 µmol/L, respectively, lower the cryo-damage and improve post-thaw seminal attributes.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - A K Roy
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sujata Pandita
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Kathan Raval
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Priyanka Patoliya
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikram Ramesh
- Animal Reproduction and Gynaecology, ICAR-National Research Center on Mithun, Medziphema, India
| | - Raju Kr Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Hanuman P Yadav
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - T K Mohanty
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Upadhyay VR, Ramesh V, Dewry RK, Yadav DK, Ponraj P. Bimodal interplay of reactive oxygen and nitrogen species in physiology and pathophysiology of bovine sperm function. Theriogenology 2022; 187:82-94. [DOI: 10.1016/j.theriogenology.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
|
4
|
Staicu FD, Martínez-Soto JC, Canovas S, Matás C. Nitric oxide-targeted protein phosphorylation during human sperm capacitation. Sci Rep 2021; 11:20979. [PMID: 34697378 PMCID: PMC8546126 DOI: 10.1038/s41598-021-00494-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
Among many other molecules, nitric oxide insures the correct progress of sperm capacitation by mediating phosphorylation events. For a more comprehensive understanding of how this happens, we capacitated human spermatozoa from healthy men in the presence/absence of S-Nitrosoglutathione, a nitric oxide donor, two nitric oxide synthase inhibitors, NG-Nitro-l-arginine Methyl Ester Hydrochloride and Aminoguanidine Hemisulfate salt and, finally, with/without l-Arginine, the substrate for nitric oxide synthesis, and/or human follicular fluid. When analyzing the phosphorylation of protein kinase A substrates and tyrosine residues, we particularly observed how the inhibition of nitric oxide synthesis affects certain protein bands (~ 110, ~ 87, ~ 75 and ~ 62 kD) by lowering their phosphorylation degree, even when spermatozoa were incubated with l-Arginine and/or follicular fluid. Mass spectrometry analysis identified 29 proteins in these species, related to: spermatogenesis, binding to the zona pellucida, energy and metabolism, stress response, motility and structural organization, signaling and protein turnover. Significant changes in the phosphorylation degree of specific proteins could impair their biological activity and result in severe fertility-related phenotypes. These findings provide a deeper understanding of nitric oxide’s role in the capacitation process, and consequently, future studies in infertile patients should determine how nitric oxide mediates phosphorylation events in the species here described.
Collapse
Affiliation(s)
- Florentin-Daniel Staicu
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Calle Campus Universitario, 11, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | | | - Sebastian Canovas
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain.,Department of Physiology, Nursery Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Calle Campus Universitario, 11, 30100, Murcia, Spain. .,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain.
| |
Collapse
|
5
|
Hegazy MM, Sakr AEAM, Abd El-Aziz AH, Swelum AA. Effect of adding different concentrations of L-arginine to Tris-yolk extender on the quality of sub-fertile ejaculates in buffalo. Trop Anim Health Prod 2021; 53:103. [PMID: 33417110 DOI: 10.1007/s11250-020-02499-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
To investigate the effect of supplementation of L-arginine (AR) on sub-fertile buffalo-bulls' ejaculates, 25 ejaculates of poor motility (40 to 55%) were collected by artificial vagina from 5 buffalo-bulls and extended with Tris-yolk extender (1:10) supplemented with different concentrations of AR (0, 3, 4, 5, and 6 mM). Semen was cooled gradually to 4 °C within 2 h and incubated at 4 °C for additional 2 h. Incubated semen samples were evaluated by computer-assisted semen analysis. Results showed that addition of 5 mM AR increased (P < 0.05) total sperm motility and rapid progressive motility percentages, while decreased (P < 0.05) non-motile sperm and static sperm percentages compared with AR-free (control) extender. Increasing the AR level to 6 mM increased (P < 0.05) the percentages of sperm progressive motility and rapid and slow progressive motilities, while decreased (P < 0.05) the non-progressive sperm motility percentages compared with AR-free extender. Supplementation of 5 mM AR improved (P < 0.05) sperm straight linear, curve linear, and average path velocities (36 ± 0.13, 20.6 ± 5.3, and 33.2 ± 8.5, respectively) in comparing with control and other AR treatments. Addition of AR (5 and 6 mM) improved (P < 0.05) the percentages of vitality (89.8 ± 1.9 and 80.0 ± 3.4, respectively), normality (44.3 ± 3.6 and 44.8 ± 1.5, respectively), and functional sperm (20.4 ± 8.6 and 21.0 ± 0.61, respectively), and decreased abnormal neck and tail percentages compared with AR-free extender. All AR levels decreased (P < 0.05) the abnormal neck and tail percentages. Addition of all AR levels had no significant (P > 0.05) effect on the activity of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase in semen extender. Supplementation of Tris-yolk extender with L-arginine (5 or 6 mM) can improve sperm motility, velocity, vitality, and functional sperm and can decrease tail and neck abnormalities of sub-fertile buffalo ejaculate after 4 h incubation at cool temperature.
Collapse
Affiliation(s)
- Mohamed M Hegazy
- Agricultural Research Center, Animal Production Research Institute, Dokki, Egypt
| | - Abd El-Aziz M Sakr
- Agricultural Research Center, Animal Production Research Institute, Dokki, Egypt
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, 44519, Egypt. .,Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
6
|
Romero-Aguirregomezcorta J, Soriano-Úbeda C, Matás C. Involvement of nitric oxide during in vitro oocyte maturation, sperm capacitation and in vitro fertilization in pig. Res Vet Sci 2020; 134:150-158. [PMID: 33387755 DOI: 10.1016/j.rvsc.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/27/2022]
Abstract
The importance of porcine species for meat production is undeniable. Due to the genetic, anatomical, and physiological similarities with humans, from a biomedical point of view, pig is considered an ideal animal model for the study and development of new therapies for human diseases. The in vitro production (IVP) of porcine embryos has become widespread as a result of these qualities and there is significant demand for these embryos for research purposes. However, the efficiency of porcine embryo IVP remains very low, which hinders its use as a model for research. The high degree of polyspermic fertilization is the main problem that affects in vitro fertilization (IVF) in porcine species. Furthermore, oocyte in vitro maturation (IVM) is another important step that could be related to polyspermic fertilization and low embryo production. The presence of nitric oxide synthase (NOS), the enzyme that produces nitric oxide (NO), has been detected in the oviduct, the ovary, the oocyte and the sperm cell of porcine species. Its functions include regulating oviductal activity, ovulation, acquisition of meiotic competence, oocyte activation, sperm capacitation, and gamete interaction. Therefore, in this review, we summarize the current knowledge on the role of NO/NOS system in each of the steps that lead to the production of porcine embryos in an in vitro environment, i.e. IVM, sperm capacitation, IVF, and embryo culture. We also discuss the possible ways in which the NO/NOS system could be used to enhance IVP of porcine embryos.
Collapse
Affiliation(s)
- Jon Romero-Aguirregomezcorta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
7
|
Dubeibe DF, Caldas-Bussiere MC, Maciel VL, Sampaio W, Gonçalves PBD, De Cesaro MP, Quirino CR, Faes MR, Paes de Carvalho CS. Partial inhibition of nitric oxide synthase activity stimulates the nuclear maturation progression of bovine cumulus-oocyte complex in vitro in the presence of hemisections of the follicular walls. ZYGOTE 2020; 28:1-9. [PMID: 32408924 DOI: 10.1017/s0967199420000234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study aimed to assess the effects of the inhibition of nitric oxide synthase (NOS) on events that modulate bovine in vitro oocyte maturation. Cumulus-oocyte complexes (COCs) were cultured with hemisections (HSs) of the follicular walls in a maturation medium supplemented with different concentrations (0.1-10.0 mM) of Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME). Controls consisted of COCs cultured in the presence (+HSs) or absence of HSs (-HSs) with no additional l-NAME supplementation. The following parameters were assessed: oocyte nuclear maturation stage; cumulus cell (CC) membrane integrity; nitrate/nitrite, progesterone, and estradiol concentrations in the culture medium at 22 h of cultivation; and the concentrations of cGMP and cAMP in COCs during the first hour of maturation. The addition of 1.0 mM l-NAME increased the percentage of oocytes that reached metaphase II (MII) and the percentage of intact CCs (P < 0.05). All l-NAME concentrations reduced the nitrate/nitrite concentrations (P < 0.05), but none affected steroid concentrations compared with control +HSs (P > 0.05). The addition of 1.0 mM l-NAME reduced cGMP concentrations at 3 h and increased cAMP concentrations in the first hour of culture (P < 0.05). Our findings suggest that the NOS/NO/cGMP pathway participates in meiosis progression (MI to MII) of the bovine oocytes matured in vitro in the presence of hemisections of the follicular walls. Lastly, the mechanisms that lead to the progression of meiosis after NOS inhibition do not involve changes in steroid production.
Collapse
Affiliation(s)
- Diego Fernando Dubeibe
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Maria Clara Caldas-Bussiere
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Valter Luiz Maciel
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Wlaisa Sampaio
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Paulo B D Gonçalves
- Laboratório de Biotecnologia e Reprodução Animal, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul-RS, Cep 97105-900, Brazil
| | - Matheus P De Cesaro
- Laboratório de Biotecnologia e Reprodução Animal, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul-RS, Cep 97105-900, Brazil
| | - Celia Raquel Quirino
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Márcia R Faes
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Carla S Paes de Carvalho
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| |
Collapse
|
8
|
Miguel-Jiménez S, Carvajal-Serna M, Calvo S, Casao A, Cebrián-Pérez JÁ, Muiño-Blanco T, Pérez-Pe R. Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation? Int J Mol Sci 2020; 21:ijms21062093. [PMID: 32197481 PMCID: PMC7139474 DOI: 10.3390/ijms21062093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO·), synthesized from L-arginine by nitric oxide synthase (NOS), is involved in sperm functionality. NOS isoforms have been detected in spermatozoa from different species, and an increment in NOS activity during capacitation has been reported. This work aims to determine the presence and localization of NOS isoforms in ram spermatozoa and analyse their possible changes during in vitro capacitation. Likewise, we investigated the effect of melatonin on the expression and localization of NOS and NO· levels in capacitated ram spermatozoa. Western blot analysis revealed protein bands associated with neuronal NOS (nNOS) and epithelial NOS (eNOS) but not with inducible NOS (iNOS). However, the three isoforms were detected by indirect immunofluorescence (IFI), and their immunotypes varied over in vitro capacitation with cAMP-elevating agents. NO· levels (evaluated by DAF-2-DA/PI staining) increased after in vitro capacitation, and the presence of L-arginine in the capacitating medium raised NO· production and enhanced the acrosome reaction. Incubation in capacitating conditions with a high-cAMP medium with melatonin modified the NOS distribution evaluated by IFI, but no differences in Western blotting were observed. Melatonin did not alter NO· levels in capacitating conditions, so we could infer that its role in ram sperm capacitation would not be mediated through NO· metabolism.
Collapse
|
9
|
Aguiar GB, Caldas-Bussiere MC, Maciel VL, de Carvalho CSP, de Souza CLM. Association of L-arginine with heparin on the sperm capacitation improves in vitro embryo production in bovine. Anim Reprod 2019; 16:938-944. [PMID: 32368274 PMCID: PMC7189474 DOI: 10.21451/1984-3143-ar2019-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We aimed to evaluate the effects of L-arginine (L-arg) in the quality of in vitro heparin-induced capacitation of cryopreserved bovine spermatozoa and its effects on IVP. The experimental groups were: Control 0 hour without pre-capacitation, and groups of sperm capacitated for 30 min in the absence of COC with heparin (Control 30 min), with 1 mM L-arg and with 1 mM L-arg + heparin. The capacitation pattern was evaluated by chlortetracycline assay and the integrity of the plasma membrane (PM) and acrosome membrane (AM) by the association of Hoescht 33342 and propidium iodide. Further, we assess the sperm quality by the rate of in vitro blastocysts production. Treatment with 1 mM L-arg + heparin increased the percentage of capacitated sperm when compared to Control 0 hour and the treatment with heparin (61.1 vs. 18.2 and 47.0%, respectively, P<0.05). The addition of 1 mM L-arg to the medium has capacitated the spermatozoa (26.2 ± 3.8) but was less effective than heparin (47.0 ± 4.0) (P<0.05). There was no difference in the percentage of sperm with intact PM between treatments when compared to Control 0 hour (P>0.05). The group capacitated with 1 mM L-arg + heparin for 30 min increased the blastocyst rate compared to Control IVF (53.7 vs. 40.8%, P<0.05). We conclude that the addition of L-arg with heparin increases the number of capacitated spermatozoa in vitro with 30 min of pre-incubation in the absence of COC not altering the integrity of plasma and acrosomal membrane. This treatment in the absence of COC was the most effective method for blastocysts production, and the method of pre-incubation could be used to assess the role of other substances in the sperm capacitation and its effect on IVP.
Collapse
Affiliation(s)
- Gester Breda Aguiar
- Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Laboratório de Reprodução e Melhoramento Genético Animal, Campos dos Goytacazes, RJ, Brasil
| | - Maria Clara Caldas-Bussiere
- Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Laboratório de Reprodução e Melhoramento Genético Animal, Campos dos Goytacazes, RJ, Brasil
| | - Valter Luiz Maciel
- Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Laboratório de Reprodução e Melhoramento Genético Animal, Campos dos Goytacazes, RJ, Brasil
| | - Carla Sobrinho Paes de Carvalho
- Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Laboratório de Reprodução e Melhoramento Genético Animal, Campos dos Goytacazes, RJ, Brasil
| | - Cláudio Luiz Melo de Souza
- Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Laboratório de Engenharia Agrícola, Campos dos Goytacazes, RJ, Brasil
| |
Collapse
|
10
|
Maciel VL, Caldas-Bussiere MC, Marín DFD, Paes de Carvalho CS, Quirino CR, Leal ACDMS. Nitric oxide impacts bovine sperm capacitation in a cGMP-dependent and cGMP-independent manner. Reprod Domest Anim 2019; 54:1612-1620. [PMID: 31549441 DOI: 10.1111/rda.13570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
We aimed to elucidate whether NO acts in in vitro sperm capacitation in bovine via cGMP/PKG1 pathway. For this, cryopreserved bovine sperm were capacitated in vitro with 20 µg/ml heparin (Control) plus treatments: 1 mM L-arginine (L-arg, NO precursor), 50 µM Rp-8-Bromo-β-phenyl-1,N2 -ethenoguanosine-3',5'-cyclic monophosphorothioate (Rp-8-Br-cGMPS, selective inhibitor of the binding site for cGMP in PKG1), 1 mM 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO, NO scavenger), and the combinations of L-arg + RP-8-Br-cGMPS and L-arg + PTIO. Sperm motility and vigour were determined by phase-contrast microscopy, capacitation status by chlortetracycline staining, and the intracellular concentration of cGMP was measured by ELISA. Data were subjected to analysis of variance and means compared with SNK test at 5% probability. Motility and vigour were lower in sperm treated with PTIO when compared to Control and other treatments (p < .05). The L-arg treatment showed the highest percentage of capacitated sperm when compared to the Control and other treatments (Rp-8-Br-cGMPS, L-arg + Rp-8-Br-cGMPS and PTIO) (69.8 ± 3.4%, 51.2 ± 3.0, 51.1 ± 2.1, 51.2 ± 3.0 and 45.5 ± 2.7, respectively) (p < .05). The capacitation ratio (%) was lower in treatments with Rp-8-Br-cGMPS, L-arg + Rp-8-Br-cGMPS and PTIO, respectively (p < .05). Lastly, cGMP concentration (pmol/ml) was lower in PTIO and L-arg + PTIO (1.3 ± 0.3 and 1.6 ± 0.4) and was higher in Rp-8-Br-cGMPS and L-arg + Rp-8-Br-cGMPS (3.7 ± 0.4 and 4.0 ± 0.5) treatments. We showed that during in vitro capacitation of cattle: (a) NO influences sperm motility and vigour; (b) NO is associated with cGMP synthesis through two independent pathways and (c) the cGMP/PKG1 pathway has a partial role in sperm capacitation and does not involve the L-arg/NO.
Collapse
Affiliation(s)
- Valter Luiz Maciel
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Maria Clara Caldas-Bussiere
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Diego Fernando Dubeibe Marín
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Carla Sobrinho Paes de Carvalho
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Celia Raquel Quirino
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Ana Carolina de Macedo Soares Leal
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| |
Collapse
|
11
|
Regulation of boar sperm functionality by the nitric oxide synthase/nitric oxide system. J Assist Reprod Genet 2019; 36:1721-1736. [PMID: 31325069 PMCID: PMC6707978 DOI: 10.1007/s10815-019-01526-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Nitric oxide (NO) is a free radical synthesized mainly by nitric oxide synthases (NOSs). NO regulates many aspects in sperm physiology in different species. However, in vitro studies investigating NOS distribution, and how NO influences sperm capacitation and fertilization (IVF) in porcine, have been lacking. Therefore, our study aimed to clarify these aspects. Methods Two main experiments were conducted: (i) boar spermatozoa were capacitated in the presence/absence of S-nitrosoglutathione (GSNO), a NO donor, and two NOS inhibitors, NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) and aminoguanidine hemisulfate salt (AG), and (ii) IVF was performed in the presence or not of these supplements, but neither the oocytes nor the sperm were previously incubated in the supplemented media. Results Our results suggest that NOS distribution could be connected to pathways which lead to capacitation. Treatments showed significant differences after 30 min of incubation, compared to time zero in almost all motility parameters (P < 0.05). When NOSs were inhibited, three protein kinase A (PKA) substrates (~ 75, ~ 55, and ~50 kDa) showed lower phosphorylation levels between treatments (P < 0.05). No differences were observed in total tyrosine phosphorylation levels evaluated by Western blotting nor in situ. The percentage of acrosome-reacted sperm and phosphatidylserine translocation was significantly lower with L-NAME. Both inhibitors reduced sperm intracellular calcium concentration and IVF parameters, but L-NAME impaired sperm ability to penetrate denuded oocytes. Conclusions These findings point out to the importance of both sperm and cumulus-oocyte-derived NO in the IVF outcome in porcine. Electronic supplementary material The online version of this article (10.1007/s10815-019-01526-6) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
l-arginine alters the proteome of frozen-thawed bovine sperm during in vitro capacitation. Theriogenology 2018; 119:1-9. [DOI: 10.1016/j.theriogenology.2018.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
|
13
|
de Andrade AFC, Arruda RP, Torres MA, Pieri NCG, Leite TG, Celeghini ECC, Oliveira LZ, Gardés TP, Bussiere MCC, Silva DF. Nitric oxide in frozen-thawed equine sperm: Effects on motility, membrane integrity and sperm capacitation. Anim Reprod Sci 2018; 195:176-184. [PMID: 29861341 DOI: 10.1016/j.anireprosci.2018.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) is a reactive nitrogen species (RSN) that, over the years, has been shown to be integrated with biological and physiological events, including reproductive processes. NO can affect the functionality of spermatozoa through free radical scavenging, deactivating and inhibiting the production of superoxide anions (O2.-). However, the role of NO in mammalian spermatozoa physiology seems paradoxical. The aim of this study was to investigate the effects of NO on motility, hyperactivation, membrane integrity, peroxidation, and capacitation in cryopreserved equine sperm. Ejaculates were collected and cryopreserved. After thawing, samples were centrifuged, suspended in an in vitro fertilization (IVF) medium and incubated with the following treatments: 1) C = control (IVF); 2) A = l-arginine (10 mM - In); 3) L = L-NAME (1 mM - Ih); 4) M = methylene blue (100 mM - Re); 5) AL = L-arginine + L-NAME (In + Ih); 6) AM = L-arginine + methylene blue (In + Re). The samples were evaluated for spermatic kinetics by CASA and other analyses [plasma and acrosomal membranes used the propidium iodide (PI) and Pisum sativum agglutinin (PSA), detection of tyrosine residues phosphorylation in the membrane (F0426), nitric oxide (DAF-2/DA), lipid peroxidation (C11-BODIPY581/591)] by flow cytometry. The l-arginine treatments reduced MOT, PROG, RAP and LIN only at time 0 min compared to the control and L-NAME. These treatments (MT and MP, VAP, VSL, LIN, RAP) also reduced the sperm movement characteristics but only at the beginning of the incubation period. After this period of incubation, motility recovered. NO removal by methylene blue almost completely inhibited sperm motility, but these treatments had the highest percentages of intact membranes. l-arginine treatments improved acrosome reactions and differed from M and AM. NO production, tyrosine phosphorylation and lipid peroxidation did not differ among treatments, except for M and AM, where a reduction in these variables was detected. Therefore, equine sperm capacitation and the acrosome reaction are part of an oxidative process that involves the participation of ROS, and NO plays an important role in the maintenance and regulation of motility, hyperactivation, induction of acrosome reaction and possibly in capacitation, which are indispensable processes for the fertility of equine sperm.
Collapse
Affiliation(s)
- André F C de Andrade
- Laboratory of Andrology and Technology of Swine Embryos, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil.
| | - Rubens P Arruda
- Laboratory of Semen Biotechnology and Andrology, Department of Animal Reproduction,School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Mariana A Torres
- Laboratory of Andrology and Technology of Swine Embryos, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Naira C G Pieri
- Laboratory of Andrology and Technology of Swine Embryos, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Ticiano G Leite
- Laboratory of Semen Biotechnology and Andrology, Department of Animal Reproduction,School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Eneiva Carla C Celeghini
- Laboratory of Teaching and Research in Pathology of Reproduction, Department of Animal Reproduction,School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Leticia Z Oliveira
- Department of Animal Pathology and Clinic, School of Veterinary Medicine, Federal Fluminense University, Niterói, RJ, Brazil
| | - Thayna P Gardés
- Laboratory of Semen Biotechnology and Andrology, Department of Animal Reproduction,School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Maria Clara C Bussiere
- Laboratory of Animal Reproduction and Genetics, Norte Fluminense University, Campus dos Goytacazes, RJ, Brazil
| | - Daniela F Silva
- Laboratory of Semen Biotechnology and Andrology, Department of Animal Reproduction,School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil
| |
Collapse
|
14
|
Ghosh P, Mukherjee S, Bhoumik A, Dungdung SR. A novel epididymal quiescence factor inhibits sperm motility by modulating NOS activity and intracellular NO-cGMP pathway. J Cell Physiol 2018; 233:4345-4359. [PMID: 29150942 DOI: 10.1002/jcp.26275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022]
Abstract
Mature and potentially motile spermatozoa stored in cauda epididymis in an inactive state for approximately 30 days; however, during ejaculation they regain motility. To understand the actual molecular mechanism of the sperm quiescence during caudal stay, a proteinaceous quiescence factor (QF) has been purified from caprine epididymal plasma to apparent homogeneity. In the present study complete purification, detailed characterization as well as mechanistic pathway of QF has been described. QF is purified to 215-fold with 45% activity recovery. It is a 59 kDa monomeric protein with isoelectric point 5.8 and optimally active at pH 7.5. Circular dichroism spectroscopy and atomic force microscopy study confirm its α-helical secondary structure and globular tertiary conformation. QF is a thermo-stable protein as higher temperature does not alter its helical structure. N-terminal amino acid sequencing and MALDI analysis of QF did not find 100% similarity with any available protein of the database, proved its novelty. QF at 2 μM dose inhibits sperm progressive forward motility within 10 min. This motility inhibitory activity of QF is mediated by reducing NOS enzyme activity and subsequently decreasing the intracellular NO and cGMP concentration. It does not modulate intracellular Ca++ and cAMP concentration. QF has no adverse effect on DNA integrity and morphology of spermatozoa. Motility inhibitory action of QF is reversible. Thus, the role of QF in maintaining energy saving quiescence state of mature cauda spermatozoa and its reactive nitrogen species reducing activity may lead to a new direction for storage of spermatozoa and idiopathic male infertility.
Collapse
Affiliation(s)
- Prasanta Ghosh
- Cell Biology and Physiology Division, Sperm Biology Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sandipan Mukherjee
- Cell Biology and Physiology Division, Sperm Biology Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Arpita Bhoumik
- Cell Biology and Physiology Division, Sperm Biology Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sandhya R Dungdung
- Cell Biology and Physiology Division, Sperm Biology Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Nagaoka S, Asagoshi M, Kato K, Takata Y. Success in the acquisition of Bombyx mori sperm motility is influenced by the extracellular production of nitric oxide (NO) in the presence of seminal fluid nitric oxide synthase (NOS). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 84:40-47. [PMID: 28414175 DOI: 10.1016/j.ibmb.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
A trypsin-like protease called initiatorin is known to initiate sperm motility in the silkworm, Bombyx mori, but little is known about the signaling events leading to sperm flagellar beating. The aim of this study was to investigate whether this mechanism of sperm motility activation involves the signaling transmitter nitric oxide (NO). NO is produced from the amino acid L-arginine by the enzyme action of nitric oxide synthase (NOS; EC 1.14.13.39). Simple treatment of quiescent sperm with an NO donor (SNAP or NOC7) in vitro did not lead to activation of motility. Nevertheless, initiatorin- or trypsin-induced motility was blocked by pretreatment of sperm with either the NOS inhibitor L-NAME or NO scavenger carboxy-PTIO. These observations suggested that NO may play important physiological roles in the acquisition of sperm motility under the in vitro condition used here. Then, we investigated whether NO synthesis would occur in the spermatophore, a capsule containing spermatozoa that is created by the contents of various male reproductive glands and is the site of sperm maturation. The amounts of NO2- and NO3-, stable metabolites of NO, reached maximum values after enclosure in the spermatophore, a time when apyrene spermatozoa acquire vigorous motility. Moreover, RT-PCR and Western blotting analyses of NOS indicated that it is abundantly expressed in glandula (g.) lacteola of the virgin male ejaculatory duct, from which it is secreted to the seminal fluid and transferred to the female during mating. Previous studies demonstrated that free L-arginine is supplied de novo by a specific proteolytic reaction in which initiatorin participates during spermatophore formation (Osanai et al., 1987c). Based on these results, it can be presumed that the mixing of seminal fluid contents from each male reproductive organ during ejaculation induced NO production outside of the spermatid, and exogenous NO stimulated a signaling pathway involved in the activation of silkworm apyrene sperm.
Collapse
Affiliation(s)
- Sumiharu Nagaoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Maiko Asagoshi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keita Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuki Takata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
16
|
Dubeibe DF, Caldas-Bussiere MC, Maciel VL, Sampaio WV, Quirino CR, Gonçalves PBD, De Cesaro MP, Faes MR, Paes de Carvalho CS. L-arginine affects the IVM of cattle cumulus-oocyte complexes. Theriogenology 2016; 88:134-144. [PMID: 27743687 DOI: 10.1016/j.theriogenology.2016.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions, including meiotic maturation of cattle oocytes. This study aimed to evaluate the effect of supplementation of culture medium with the L-arginine (L-arg, NO synthesis precursor) in nuclear maturation of oocytes, concentrations of nitrate/nitrite, progesterone (P4), and 17β-estradiol (E2) in the culture medium; and the cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) intracellular concentrations in the cumulus-oocyte complexes (COCs) during the first hours of maturation in the presence of hemisections (HSs) of the follicular wall (control -ve). The addition of 5.0-mM L-arg increased (P < 0.05) the percentage of oocytes at the germinal vesicle breakdown stage after 7 hours of cultivation compared with control -ve. All concentrations of L-arg (2.5, 5.0, and 10.0 mM) increased the percentage of oocytes that reached the metaphase I (MI) at 15 hours (P < 0.05) but do not affect the progression from MI to metaphase II (P > 0.05) at 22 hours. All concentrations of L-arg tested increased (P < 0.05) the percentage of cumulus cells with plasma membrane integrity at 22 hours of cultivation. L-arginine did not change (P > 0.05) the nitrate/nitrite, P4, and E2 concentrations in relation to control -ve at any of the times tested. In immature COCs, immediately after being removed from the follicles (0 hours), the intracellular concentration of cGMP in the control -ve and treatment with 5-mM L-arg progressively decreased (P < 0.05) after the first hour of cultivation; however, COCs treated with 5.0-mM L-arg had higher concentrations of cGMP at 1 hour of cultivation (P < 0.05). The cAMP concentration of COCs supplemented or not with 5.0-mM L-arg progressively increased until 3 hours of cultivation and at, 6 hours, decreased (P < 0.05). The results show, in using this system, that (1) the mechanisms that give the oocyte the ability to restart the meiosis until MI after adding 5.0-mM L-arg do not involve changes in the concentration of nitrate/nitrite, P4, and E2 in the culture medium and (2) L-arg acts on a pathway that involves changing the cGMP concentration but does not involve changing cAMP concentration. More studies are needed to assess whether the observed effects of L-arg during IVM using this system are via NO or not and what the role is in increasing the viability of cumulus cells in the resumption and progression of meiosis until MI.
Collapse
Affiliation(s)
- D F Dubeibe
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - M C Caldas-Bussiere
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - V L Maciel
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - W V Sampaio
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - C R Quirino
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - P B D Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, Santa Maria Federal University (Universidade Federal de Santa Maria-UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - M P De Cesaro
- Laboratory of Biotechnology and Animal Reproduction, Santa Maria Federal University (Universidade Federal de Santa Maria-UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - M R Faes
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - C S Paes de Carvalho
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Santana PPB, da Silva BB, Silva TVG, Costa NN, Cordeiro MS, Santos SSD, Ohashi OM, Miranda MS. Addition of L-arginine to the fertilization medium enhances subsequent bovine embryo development rates. Theriogenology 2016; 85:1132-8. [PMID: 26733119 DOI: 10.1016/j.theriogenology.2015.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/16/2015] [Accepted: 11/27/2015] [Indexed: 12/13/2022]
Abstract
Although L-Arginine (ARG) has been reported as a promising bovine sperm capacitation agent, its effects on embryo development are still poorly understood. Herein, we compared the effects of ARG and/or heparin (HEP) addition to the fertilization medium for bovine oocytes on sperm capacitation and embryo development. We chose 10 mM ARG based on blastocyst development rates in a titration experiment. Addition of ARG and/or HEP to the fertilization medium resulted in similar rates of blastocyst development (P > 0.05). However, when ARG, but not HEP, was combined with a nitric oxide (NO) synthase inhibitor (N-Nitro-L-ARG-methyl ester, 10 mM) blastocyst development was decreased (P < 0.05). To assess the effects on capacitation, bovine sperm were incubated for 0, 3, and 6 hours in fertilization medium containing ARG and/or HEP and/or N-Nitro-L-ARG-methyl esterand acrosomal exocytosis rates were evaluated using fluorescein isothiocyanate conjugated Pisum sativum lectin (FITC-PSA) staining and flow cytometry. With HEP, acrosomal exocytosis rates were highest by 3 hours of incubation; however, by 6 hours, rates were similar for HEP and/or ARG (P > 0.05) and higher than those in control media (P < 0.05). Although both ARG and HEP increased sperm NO production (P < 0.05), combination with L-NAME only precluded acrosomal exocytosis when ARG added alone in the medium (P > 0.05). These results suggest that although both ARG and HEP supported sperm capacitation, only the effects of the former were driven via NO production. Moreover, ARG was also as effective as HEP at improving blastocyst development rates. Therefore, ARG may be used as a low-cost alternative sperm capacitation agent for bovine in vitro embryo production.
Collapse
Affiliation(s)
- Priscila P B Santana
- Department of Biology, Federal Rural University of Amazon, Capitão-Poço, Pará, Brazil.
| | - Bruno B da Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Thiago V G Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Nathalia N Costa
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Marcela S Cordeiro
- Federal Institute of Education, Science and Technology of Pará, Castanhal, Pará, Brazil
| | - Simone S D Santos
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Otávio M Ohashi
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Moysés S Miranda
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
18
|
Liman N, Alan E. Region-specific localization of NOS isoforms and NADPH-diaphorase activity in the intratesticular and excurrent duct systems of adult domestic cats (Felis catus). Microsc Res Tech 2016; 79:192-208. [PMID: 26910642 DOI: 10.1002/jemt.22619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/10/2022]
Abstract
Nitric oxide (NO) is produced by nitric oxide synthases (NOSs) and plays an important role in all levels of reproduction from the brain to the reproductive organs. Recently, it has been discovered that all germ cells and Leydig cells in the cat testis exhibit stage-dependent nuclear and cytoplasmic endothelial (eNOS) and inducible (iNOS)-NOS immunoreactivity and cytoplasmic nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity. As a continuation of this finding, in this study, cellular localization of NADPH-d and immunolocalization and expression of all three NOS isoforms were investigated in the intratesticular (tubuli recti and rete testis), and excurrent ducts (efferent ductules, epididymal duct and vas deferens) of adult cats using histochemistry, immunohistochemistry and western blotting. NADPH-d activity was found in the midpiece of the spermatozoa tail and epithelial cells of all of ducts, except for nonciliated cells of the efferent ductules. Even though the immunoblotting results revealed similar levels of nNOS, eNOS and iNOS in the caput, corpus and cauda segments of epididymis and the vas deferens, immunostainings showed cell-specific localization in the efferent ductules and region- and cell-specific localization in the epididymal duct. All of three NOS isoforms were immunolocalized to the nuclear membrane and cytoplasm of the epithelial cells in all ducts, but were found in the tail and the cytoplasmic droplets of spermatozoa. These data suggest that NO/NOS activity might be of importance not only for the functions of the intratesticular and excurrent ducts but also for sperm maturation.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, 38039, Turkey
| | - Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, 38039, Turkey
| |
Collapse
|
19
|
Wang J, He Q, Yan X, Cai Y, Chen J. Effect of exogenous nitric oxide on sperm motility in vitro. Biol Res 2014; 47:44. [PMID: 25299622 PMCID: PMC4180836 DOI: 10.1186/0717-6287-47-44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) has been shown to be important in sperm function, and the concentration of NO appears to determine these effects. Studies have demonstrated both positive and negative effects of NO on sperm function, but have not been able to provide a clear link between NO concentration and the extent of exposure to NO. To study the relationship between nitric oxide and sperm capacitation in vitro, and to provide a theoretical basis for the use of NO-related preparations in improving sperm motility for in vitro fertilization, we investigated the effects of NO concentration and time duration at these concentrations on in vitro sperm capacitation in both normal and abnormal sperm groups. We manipulated NO concentrations and the time duration of these concentrations using sodium nitroprusside (an NO donor) and NG-monomethyl-L-argenine (an NO synthase inhibitor). RESULTS Compared to the normal sperm group, the abnormal sperm group had a longer basal time to reach the appropriate concentration of NO (p < 0.001), and the duration of time at this concentration was longer for the abnormal sperm group (p < 0.001). Both the basal time and the duration of time were significantly correlated with sperm viability and percentage of progressive sperm (p < 0.001). The experimental group had a significantly higher percentage of progressive sperm than the control group (p < 0.001). CONCLUSIONS We hypothesize that there is a certain regularity to both NO concentration and its duration of time in regards to sperm capacitation, and that an adequate duration of time at the appropriate NO concentration is beneficial to sperm motility.
Collapse
Affiliation(s)
- Jiangtao Wang
- Departments of Urology, Affiliated Hospital, Shandong Medical college, Linyi, Shandong, China.
| | - Qingliu He
- Departments of Urology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China.
| | - Xingyu Yan
- Departments of Urology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China.
| | - Youmei Cai
- Departments of Ophthalmology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China.
| | - Junyi Chen
- Departments of Urology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
20
|
Scala G, Maruccio L. Nitric oxide (NO) expression during annual reproductive activity in buffalo epididymis: a histochemical and immunocytochemical study. Theriogenology 2012; 78:49-56. [PMID: 22406309 DOI: 10.1016/j.theriogenology.2012.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 01/22/2023]
Abstract
The buffalo is one of the few domestic animals that has a seasonal mating cycle, influenced by the photoperiod. It is known that the photoperiod regulates gonadal function probably via the pineal and/or hypothalamus-pituitary axis. Moreover, the hypothalamus (melatonin) and gonads influence the production of the signaling transmitter nitric oxide (NO), suggesting that the NO may have an important role in the regulation of gonadotropin-releasing hormone secretion. This further suggests the hypothesis that NO in the epididymis has an important role in the maturation of spermatozoa and their motility and posterior fertilization capacity. The aim of the present study is to investigate the seasonal variations in the morphology of the epididymis by means histochemical and immunocytochemical techniques. We used the NADPH-d, nitric oxide synthase (NOS) I and NOS III to clarify the relationship between epididymis function and NO signaling activity. The results of this work show that NO is present in the caput of epididymis during short photoperiods, i.e., periods of maximum gonadal activity (winter) and absent during long photoperiods, i.e., periods of gonadal regression according to the previously described role of NO in spermatozoa capacitation and motility in the caput epididymis.
Collapse
Affiliation(s)
- Gaetano Scala
- Department of Biological Structures, Functions and Technologies, University of Napoli Federico II, Napoli, Italy.
| | | |
Collapse
|
21
|
Jagan Mohanarao G, Atreja SK. Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Res Vet Sci 2011; 93:618-23. [PMID: 22035659 DOI: 10.1016/j.rvsc.2011.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/27/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022]
Abstract
To acquire the fertilizing competence, spermatozoa must undergo a cascade of physiological and biochemical changes collectively defined as capacitation. Compelling evidence signifies that the global increase in protein tyrosine phosphorylation is the driving factor for capacitation. In our laboratory, we previously demonstrated that nitric oxide (NO) induces capacitation in buffalo sperm and is associated with an increase in protein tyrosine phosphorylation. The aim of the present study is to identify the proteins undergo tyrosine phosphorylation during NO induced buffalo sperm capacitation using 2-D immunoblotting and mass spectrometry. The percentage of progressively motile and capacitated sperm was more in presence of l-arginine. Along with known tyrosine phosphoproteins like ATP synthase subunit beta, pyruvate dehydrogenase E1 component subunit beta, GST mu 3, F-actin capping protein subunit beta 2, GPD2 and VDAC2, interestingly novel tyrosine phosphoprotein substrates such as actin, serine/threonine-protein phosphatase PP1-gamma catalytic subunit, and glutamine synthetase were also identified which might be specific to the NO induced signaling and also emphasizes the species specificity with respect to tyrosine phosphorylation of proteins during capacitation. In conclusion, this study forms an essential step in delineating the proteins undergo tyrosine phosphorylation in response to NO induced signaling pathways during capacitation of buffalo sperm.
Collapse
Affiliation(s)
- G Jagan Mohanarao
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132 001, Haryana, India.
| | | |
Collapse
|
22
|
Ferreira-Berbari J, Caldas-Bussiere M, Paes de Carvalho C, Viana K, Leal A, Quirino C. Efeito da inibição da óxido nítrico sintase induzível na capacitação in vitro de espermatozoides bovinos. ARQ BRAS MED VET ZOO 2010. [DOI: 10.1590/s0102-09352010000300003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Avaliaram-se o papel do óxido nítrico (NO) por meio da inibição da enzima óxido nítrico sintase induzível (iNOS), após a adição da aminoguanidina (AG), na motilidade, no vigor e na integridade da membrana plasmática nos tempos de 15, 60, 120, 180, 240 e 300min e a atividade mitocondrial e a capacitação de espermatozoides bovinos após 300min de cultivo. Adicionaram-se diferentes concentrações (0,001, 0,01 e 0,1M) de AG durante a capacitação induzida pela heparina e 500μM de nitroprussiato de sódio (SNP, doador de NO) à concentração deletéria. A adição de 0,1M de AG diminuiu a motilidade e o vigor espermático e a integridade da membrana (P<0,05). A adição de SNP ao meio de cultivo com 0,1M de AG somente reverteu a integridade da membrana após 300min. A inibição da síntese de NO pela adição de AG não alterou a atividade mitocondrial. A percentagem de oócitos penetrados com espermatozoides tratados com 0,01 e 0,1M de AG diminuiu 20,3 e 100%, respectivamente, em relação aos não tratados (controle) (P<0,05), contudo houve aumento de 15% na percentagem de oócitos desnudados penetrados com espermatozoides capacitados em presença de 0,1M de AG. Conclui-se que a inibição da síntese de NO pela AG diminuiu a qualidade espermática durante a capacitação de espermatozoides bovinos in vitro, exceto a atividade mitocondrial. Somente a integridade da membrana foi revertida após adição de NO, sugerindo diferentes vias de ação do NO na qualidade espermática ao longo da capacitação in vitro de espermatozoides bovinos.
Collapse
|