1
|
Bouroutzika E, Proikakis S, Theodosiadou EK, Vougas K, Katsafadou AI, Tsangaris GT, Valasi I. Proteomics Analysis of Pregnancy in Ewes under Heat Stress Conditions and Melatonin Administration. Animals (Basel) 2024; 14:400. [PMID: 38338042 PMCID: PMC10854642 DOI: 10.3390/ani14030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Melatonin is an indoleamine with broad spectrum properties that acts as a regulator of antioxidant and immune response in organisms. In our previous studies, melatonin improved redox status and inflammatory response in pregnant ewes under heat stress conditions. In the present study, using proteomics, the proteins regulated by melatonin during different stages of pregnancy and lambing were assessed. Twenty-two ewes equally divided into two groups, the melatonin (M) (n = 11) and control (C) group (n = 11), participated in the study and were exposed to heat stress during the first months of pregnancy. In the M group, melatonin implants were administered throughout pregnancy, every 40 days, until parturition (a total of four implants per ewe). Blood samples were collected at the beginning of the study simultaneously with the administration of the first melatonin implant (blood samples M1, C1), mating (M2, C2), second implant (M3, C3), fourth implant (M4, C4) and parturition (M5, C5), and MALDI-TOF analysis was performed. The results revealed the existence of 42 extra proteins in samples M2, M3 and M4 and 53 in M5 (sample at parturition) that are linked to melatonin. The biological processes of these proteins refer to boosted immune response, the alleviation of oxidative and endoplasmic reticulum stress, energy metabolism, the protection of the maternal organism and embryo development. This proteomics analysis indicates that melatonin regulates protective mechanisms and controls cell proliferation under exogenous or endogenous stressful stimuli during pregnancy and parturition.
Collapse
Affiliation(s)
- Efterpi Bouroutzika
- Faculty of Veterinary Science, University of Thessaly, 43131 Karditsa, Greece; (E.B.); (E.K.T.)
| | - Stavros Proikakis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | | | - Konstantinos Vougas
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (K.V.), (G.T.T.)
| | | | - George T. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (K.V.), (G.T.T.)
| | - Irene Valasi
- Faculty of Veterinary Science, University of Thessaly, 43131 Karditsa, Greece; (E.B.); (E.K.T.)
| |
Collapse
|
2
|
Singha S, Pandey M, Jaiswal L, Dash S, Fernandes A, Kumaresan A, Maharana BR, Lathwal SS, Sarath T, Datta TK, Mohanty TK, Baithalu RK. Salivary cell-free HSD17B1 and HSPA1A transcripts as potential biomarkers for estrus identification in buffaloes ( Bubalus bubalis). Anim Biotechnol 2023; 34:2554-2564. [PMID: 35913775 DOI: 10.1080/10495398.2022.2105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Estrus detection is a major problem in buffaloes because of the poor expression of estrus signs leading to low reproductive efficiency. Salivary transcripts analysis is a promising tool to identify biomarkers; therefore, the present study was carried out to evaluate their potential as estrus biomarkers. The levels of HSD17B1, INHBA, HSPA1A, TES transcripts were compared in saliva during estrous cycle stages [early proestrus (day -2, EP), late proestrus (day-1, LP), estrus (E), metestrus (ME) and diestrus (DE)] of cyclic heifers (n = 8) and pluriparous (n = 8) buffaloes by employing quantitative real-time polymerase chain reaction (qRT-PCR). The levels of HSD17B1 (EP/DE 1.46-2.43 fold, LP/DE 2.49-3.06 fold; E/DE 7.21-11.9-fold p < 0.01; ME/D 1.0-1.16 fold) and HSPA1A (EP/DE 0.93-2.39 fold, LP/DE 2.68-3.23 fold; E/DE 8.52-15.18 fold p < 0.01; ME/D 0.86-1.01 fold) were significantly altered during the estrus than other estrous cycle stages in both cyclic heifers and pluriparous buffaloes. Receiver operating characteristic curve analysis revealed the ability of salivary HSD17B1 (AUC 0.96; p < 0.001) and HSPA1A (AUC 0.99; p < 0.01) to differentiate E from other stages of the estrous cycle. Significantly higher levels of HSD17B1 and HSPA1A transcripts in saliva during the estrus phase suggest their biomarkers potential for estrus detection in buffaloes.
Collapse
Affiliation(s)
- Shubham Singha
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mamta Pandey
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Latika Jaiswal
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Sangram Dash
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Abhijeet Fernandes
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Arumugan Kumaresan
- SRS-Bengaluru, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Biswa Ranjan Maharana
- Regional Research Centre, Lala Lajpat Rai University of Veterinary and Animal Science, LUVAS, Karnal, Haryana, India
| | - Surender Singh Lathwal
- Livestock Production Management, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Thulasiraman Sarath
- Department of Clinics, Madras Veterinary College, TANUVAS, Vepery, Tamil Nadu, India
| | - Tirtha K Datta
- Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Tushar K Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rubina Kumari Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Al-Thuwaini TM, Albazi WJ, Al-Shuhaib MBS, Merzah LH, Mohammed RG, Rhadi FA, Abd Al-Hadi AB, Alkhammas AH. A Novel c.100C > G Mutation in the FST Gene and Its Relation With the Reproductive Traits of Awassi Ewes. Bioinform Biol Insights 2023; 17:11779322231170988. [PMID: 37153841 PMCID: PMC10159244 DOI: 10.1177/11779322231170988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Reproductive traits are affected by many factors, including ovarian function, hormones, and genetics. Genetic polymorphisms of candidate genes are associated with reproductive traits. Several candidate genes are associated with economic traits, including the follistatin (FST) gene. Thus, this study aimed to evaluate whether the genetic variations in the FST gene are associated with the reproductive traits in Awassi ewes. The genomic DNA was extracted from 109 twin ewes and 123 single-progeny ewes. Therefore, 4 sequence fragments from the FST gene were amplified using polymerase chain reaction (PCR) (exon 2/240, exon 3/268, exon 4/254, and exon 5/266 bp, respectively). For a 254 bp amplicon, 3 genotypes were identified: CC, CG, and GG. Sequencing revealed a novel mutation in CG genotypes c.100C > G. The statistical analysis of c.100C > G showed an association with reproductive characteristics. Ewes carrying the c.100C > G had significantly (P ⩽ .01) lower litter sizes, twinning rates, lambing rates, and more days to lambing compared with CG and CC genotypes. Logistic regression analysis confirmed that the c.100C > G single-nucleotide polymorphism (SNP) is responsible for decreasing litter size. According to these results, the variant c.100C > G negatively affects the traits of interest and is associated with lower reproductive traits in Awassi sheep. As a result of this study, ewes carrying the c.100C > G SNP have lower litter size and are less prolific.
Collapse
Affiliation(s)
- Tahreer M Al-Thuwaini
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
- Tahreer M Al-Thuwaini, Department of Animal
Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil,
Iraq. ;
| | - Wefak J Albazi
- Department of Physiology, College of
Veterinary Medicine, University of Kerbala, Kerbala, Iraq
| | | | - Layth H Merzah
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Rihab G Mohammed
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Fadhil A Rhadi
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Ali B Abd Al-Hadi
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Ahmed H Alkhammas
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| |
Collapse
|
4
|
El-Badry D, Maha AI, Amal ZL. Hormonal and biochemical studies on female dromedary camels affected with multiple ovarian cysts. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Almughlliq FB, Koh YQ, Peiris HN, Vaswani K, Holland O, Meier S, Roche JR, Burke CR, Crookenden MA, Arachchige BJ, Reed S, Mitchell MD. Circulating exosomes may identify biomarkers for cows at risk for metabolic dysfunction. Sci Rep 2019; 9:13879. [PMID: 31554846 PMCID: PMC6761115 DOI: 10.1038/s41598-019-50244-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Disease susceptibility of dairy cows is greatest during the transition from pregnancy to lactation. Circulating exosomes may provide biomarkers to detect at-risk cows to enhance health and productivity. From 490 cows, animals at high- (n = 20) or low-risk (n = 20) of transition-related diseases were identified using plasma non-esterified fatty acid and β-hydroxybutyrate concentrations and liver triacylglyceride concentrations during the two weeks post-calving. We isolated circulating exosomes from plasma of dairy cows at low-risk (LR-EXO) and high-risk (HR-EXO), and analyzed their proteome profiles to determine markers for metabolic dysfunction. We evaluated the effects of these exosomes on eicosanoid pathway expression by bovine endometrial stromal (bCSC) and epithelial (bEEL) cells. HR-EXO had significantly lower yield of circulating exosomes compared with LR-EXO, and unique proteins were identified in HR-EXO and LR-EXO. Exposure to LR-EXO or HR-EXO differentially regulated eicosanoid gene expression and production in bCSC and bEEL cells. In bCSC, LR-EXO exposure increased PGE2 and PGD2 production, whereas HR-EXO exposure increased PTGS2 gene expression. In bEEL, HR-EXO exposure caused a decrease in PGE2, PGF2α, PGD2, PGFM and TXB2 production. The unique presence of serpin A3-7, coiled-coil domain containing 88A and inhibin/activin β A chain in HR-EXO, indicates potential biomarkers for cows at-risk for metabolic diseases. Our results are in line with the health status of the cow indicating a potential diagnostic role for exosomes in enhancing cows’ health and fertility.
Collapse
Affiliation(s)
- Fatema B Almughlliq
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Yong Q Koh
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Hassendrini N Peiris
- Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4101, Australia
| | - Kanchan Vaswani
- Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4101, Australia
| | - Olivia Holland
- Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4101, Australia
| | - Susanne Meier
- DairyNZ Ltd., Private Bag 3221, Hamilton, 3240, New Zealand
| | - John R Roche
- DairyNZ Ltd., Private Bag 3221, Hamilton, 3240, New Zealand.,Ministry for Primary Industries- Manatū Ahu Matua, Pastoral House, Wellington, 6140, New Zealand
| | - Chris R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton, 3240, New Zealand
| | | | - Buddhika J Arachchige
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Sarah Reed
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Murray D Mitchell
- Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4101, Australia.
| |
Collapse
|
6
|
Matiller V, Hein GJ, Stassi AF, Angeli E, Belotti EM, Ortega HH, Rey F, Salvetti NR. Expression of TGFBR1, TGFBR2, TGFBR3, ACVR1B and ACVR2B is altered in ovaries of cows with cystic ovarian disease. Reprod Domest Anim 2019; 54:46-54. [PMID: 30120850 DOI: 10.1111/rda.13312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
The objective of this study was to examine the expression of transforming growth factor beta receptor (TGFBR)1, TGFBR2, TGFBR3, activin receptor (ACVR)1B and ACVR2B in ovaries of cows with cystic ovarian disease (COD). The expression of the selected receptors was determined by immunohistochemistry in sections of ovaries from cows with ACTH-induced and spontaneous COD. Expression of TGFBR1 and TGFBR3 was higher in granulosa cells of cysts from cows with spontaneous COD than in tertiary follicles from the control group. Additionally, TGFBR3 expression was higher in granulosa cells of cysts from cows with ACTH-induced COD than in those from the control group and lower in theca cells of spontaneous and ACTH-induced cysts than in tertiary control follicles. There were no changes in the expression of TGFBR2. ACVR1B expression was higher in granulosa cells of tertiary follicles of cows with spontaneous COD than in the control group, whereas ACVR2B expression was higher in cysts of the spontaneous COD group than in tertiary follicles from the control group. The alterations here detected, together with the altered expression of the ligands previously reported, indicate alterations in the response of the ligands in the target cells, modifying their actions at cellular level.
Collapse
Affiliation(s)
- Valentina Matiller
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, UNL, Esperanza, Santa Fe, Argentina
| | - Gustavo J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Centro Universitario Gálvez, Universidad Nacional del Litoral (UNL), Gálvez, Santa Fe, Argentina
| | - Antonela F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Emmanuel Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, UNL, Esperanza, Santa Fe, Argentina
| | - Eduardo M Belotti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, UNL, Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, UNL, Esperanza, Santa Fe, Argentina
| | - Florencia Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, UNL, Esperanza, Santa Fe, Argentina
| | - Natalia R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, UNL, Esperanza, Santa Fe, Argentina
| |
Collapse
|
7
|
Díaz PU, Hein GJ, Belotti EM, Rodríguez FM, Rey F, Amweg AN, Matiller V, Baravalle ME, Ortega HH, Salvetti NR. BMP2, 4 and 6 and BMPR1B are altered from early stages of bovine cystic ovarian disease development. Reproduction 2016; 152:333-50. [DOI: 10.1530/rep-15-0315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/01/2016] [Indexed: 11/08/2022]
Abstract
Cystic ovarian disease (COD) is an important cause of subfertility in dairy cattle. Bone morphogenetic proteins (BMPs), mainly BMP2, BMP4 and BMP6, play a key role in female fertility. In this study, we hypothesized that an altered BMP system is associated with ovarian alterations contributing to COD pathogenesis. Therefore, we examined the expression of BMP2, BMP4 and BMP6 and BMP receptor 1B (BMPR1B) in the ovaries of animals with spontaneous or ACTH-induced COD, as well as during the development of the disease, in a model of follicular persistence induced by low doses of progesterone (at 5, 10 and 15 days of follicular persistence). Results showed changes in BMP2, BMP4 and BMP6 expression during folliculogenesis, in granulosa and theca cells in the COD groups, as well as at different stages of follicular persistence. Results also showed changes in BMPR1B expression in developing follicles in animals with COD, and at the initial stages of follicular persistence (P5). Comparison between groups showed significant differences, mainly in BMP4 and BMP6 expression, in granulosa and theca cells of different follicular categories. The expression of these BMPs also increased in cystic and persistent follicles, in relation to antral follicles of the control group. BMPR1B showed high expression in cystic follicles. Together, these results may indicate an alteration in BMPs, especially in BMP4 and BMP6, as well as in BMPR1B, which occurs early in folliculogenesis and incipiently during the development of COD, which could be a major cause of recurrence of this disease in cattle.
Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/152/4/333.abstract.
Collapse
|
8
|
Vanselow J, Vernunft A, Koczan D, Spitschak M, Kuhla B. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles. PLoS One 2016; 11:e0160600. [PMID: 27532452 PMCID: PMC4988698 DOI: 10.1371/journal.pone.0160600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022] Open
Abstract
High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system.
Collapse
Affiliation(s)
- Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- * E-mail: (JV); (BK)
| | - Andreas Vernunft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Dirk Koczan
- Institute for Immunology, University of Rostock, 18055 Rostock, Germany
| | - Marion Spitschak
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- * E-mail: (JV); (BK)
| |
Collapse
|