1
|
Xiao W, Akao S, Okamoto R, Otsuki J. The formation of aggregated chromatin/chromosomes in mouse oocytes treated with high concentration of IBMX as a model for a chromosome transfer in human. Syst Biol Reprod Med 2024; 70:195-203. [PMID: 38972054 DOI: 10.1080/19396368.2024.2368116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
The presence of cyclic adenosine monophosphate (cAMP) has been considered to be a fundamental factor in ensuring meiotic arrest prior to ovulation. cAMP is regarded as a key molecule in the regulation of oocyte maturation. However, it has been reported that increased levels of intracellular cAMP can result in abnormal cytokinesis, with some MI oocytes leading to symmetrically cleaved 2-cell MII oocytes. Consequently, we aimed to investigate the effects of elevated intracellular cAMP levels on abnormal cytokinesis and oocyte maturation during the meiosis of mouse oocytes. This study found that a high concentration of isobutylmethylxanthine (IBMX) also caused chromatin/chromosomes aggregation (AC) after the first meiosis. The rates of AC increased the greater the concentration of IBMX. In addition, AC formation was found to be reversible, showing that the re-formation of the spindle chromosome complex was possible after the IBMX was removed. In human oocytes, the chromosomes aggregate after the germinal vesicle breakdown and following the first and second polar body extrusions (the AC phase), while mouse oocytes do not have this AC phase. The results of our current study may indicate that the AC phase in human oocytes could be related to elevated levels of intracytoplasmic cAMP.
Collapse
Affiliation(s)
- Wei Xiao
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita, Okayama, Japan
| | - Sakura Akao
- Faculty of Agriculture, Department of Animal Sciences, Okayama University, Kita, Okayama, Japan
| | - Ryota Okamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Junko Otsuki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita, Okayama, Japan
- Assisted Reproductive Technology Center, Okayama University, Kita, Okayama, Japan
| |
Collapse
|
2
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
3
|
Yang J, Tang J, He X, Di R, Zhang X, Zhang J, Guo X, Hu W, Chu M. Key mRNAs and lncRNAs of pituitary that affect the reproduction of FecB + + small tail han sheep. BMC Genomics 2024; 25:392. [PMID: 38649819 PMCID: PMC11034058 DOI: 10.1186/s12864-024-10191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The pituitary directly regulates the reproductive process through follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Transcriptomic research on the pituitaries of ewes with different FecB (fecundity Booroola) genotypes has shown that some key genes and lncRNAs play an important role in pituitary function and sheep fecundity. Our previous study found that ewes with FecB + + genotypes (without FecB mutation) still had individuals with more than one offspring per birth. It is hoped to analyze this phenomenon from the perspective of the pituitary transcriptome. RESULTS The 12 Small Tail Han Sheep were equally divided into polytocous sheep in the follicular phase (PF), polytocous sheep in the luteal phase (PL), monotocous sheep in the follicular phase (MF), and monotocous sheep in the luteal phase (ML). Pituitary tissues were collected after estrus synchronous treatment for transcriptomic analysis. A total of 384 differentially expressed genes (DEGs) (182 in PF vs. MF and 202 in PL vs. ML) and 844 differentially expressed lncRNAs (DELs) (427 in PF vs. MF and 417 in PL vs. ML) were obtained from the polytocous-monotocous comparison groups in the two phases. Functional enrichment analysis showed that the DEGs in the two phases were enriched in signaling pathways known to play an important role in sheep fecundity, such as calcium ion binding and cAMP signaling pathways. A total of 1322 target relationship pairs (551 pairs in PF vs. MF and 771 pairs in PL vs. ML) were obtained for the target genes prediction of DELs, of which 29 DEL-DEG target relationship pairs (nine pairs in PF vs. MF and twenty pairs in PL vs. ML). In addition, the competing endogenous RNA (ceRNA) networks were constructed to explore the regulatory relationships of DEGs, and some important regulatory relationship pairs were obtained. CONCLUSION According to the analysis results, we hypothesized that the pituitary first receives steroid hormone signals from the ovary and uterus and that VAV3 (Vav Guanine Nucleotide Exchange Factor 3), GABRG1 (Gamma-Aminobutyric Acid A Receptor, Gamma 1), and FNDC1 (Fibronectin Type III Domain Containing 1) played an important role in this process. Subsequently, the reproductive process was regulated by gonadotropins, and IGFBP1 (Insulin-like Growth Factor Binding Protein 1) was directly involved in this process, ultimately affecting litter size. In addition, TGIF1 (Transforming Growth Factor-Beta-Induced Factor 1) and TMEFF2 (Transmembrane Protein With EGF Like And Two Follistatin Like Domains 2) compensated for the effect of the FecB mutation and function by acting on TGF-β/SMAD signaling pathway, an important pathway for sheep reproduction. These results provided a reference for understanding the mechanism of multiple births in Small Tail Han Sheep without FecB mutation.
Collapse
Affiliation(s)
- Jianqi Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Jishun Tang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, 230031, Hefei, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, 300381, Tianjin, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, 300381, Tianjin, China
| | - Xiaofei Guo
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, 300381, Tianjin, China
| | - Wenping Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China.
| |
Collapse
|
4
|
Zhao M, Subudeng G, Zhao Y, Hao S, Li H. Effect of Cyclic Adenosine Monophosphate on Connexin 37 Expression in Sheep Cumulus-Oocyte Complexes. J Dev Biol 2024; 12:10. [PMID: 38651455 PMCID: PMC11036199 DOI: 10.3390/jdb12020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Gap junctional connection (GJC) in the cumulus-oocyte complex (COC) provides necessary support for message communication and nutrient transmission required for mammalian oocyte maturation. Cyclic adenosine monophosphate (cAMP) is not only a prerequisite for regulating oocyte meiosis, but also the key intercellular factor for affecting GJC function in COCs. However, there are no reports on whether cAMP regulates connexin 37 (Cx37) expression, one of the main connexin proteins, in sheep COCs. In this study, the expression of Cx37 protein and gene in immature sheep COC was detected using immunohistochemistry and PCR. Subsequently, the effect of cAMP on Cx37 expression in sheep COCs cultured in a gonadotropin-free culture system for 10 min or 60 min was evaluated using competitive ELISA, real-time fluorescent quantitative PCR (RT-qPCR), and Western blot. The results showed that the Cx37 protein was present in sheep oocytes and cumulus cells; the same results were found with respect to GJA4 gene expression. In the gonadotropin-free culture system, compared to the control, significantly higher levels of cAMP as well as Cx37 gene and protein expression were found in sheep COCs following treatment in vitro with Forskolin and IBMX (100 μM and 500 μM)) for 10 min (p < 0.05). Compared to the controls (at 10 or 60 min), cAMP levels in sheep COCs were significantly elevated as a result of Forskolin and IBMX treatment (p < 0.05). Following culturing in vitro for 10 min or 60 min, Forskolin and IBMX treatment can significantly promote Cx37 expression in sheep COCs (p < 0.05), a phenomenon which can be counteracted when the culture media is supplemented with RP-cAMP, a cAMP-specific competitive inhibitor operating through suppression of the protein kinase A (PKA). In summary, this study reports the preliminary regulatory mechanism of cAMP involved in Cx37 expression for the first time, and provides a novel explanation for the interaction between cAMP and GJC communication during sheep COC culturing in vitro.
Collapse
Affiliation(s)
- Mengyao Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.Z.); (G.S.); (Y.Z.); (S.H.)
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Hohhot 010018, China
| | - Gerile Subudeng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.Z.); (G.S.); (Y.Z.); (S.H.)
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yufen Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.Z.); (G.S.); (Y.Z.); (S.H.)
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shaoyu Hao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.Z.); (G.S.); (Y.Z.); (S.H.)
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.Z.); (G.S.); (Y.Z.); (S.H.)
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Hohhot 010018, China
| |
Collapse
|
5
|
Yang B, An Y, Yang Y, Zhao Y, Yu K, Weng Y, Du C, Li H, Yu B. The ERβ-cAMP signaling pathway regulates estradiol-induced ovine oocyte meiotic arrest. Theriogenology 2024; 214:81-88. [PMID: 37862941 DOI: 10.1016/j.theriogenology.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Although 17β-estradiol (E2) and its receptors (ERs) are reported to play important roles in regulating oocyte maturation, the specific mechanism remains unclear. First, we performed immunohistochemistry analyses to determine the expression of the ERα and ERβ proteins in ovine ovarian tissue. Second, E2 (0.5 ng/mL and 1 μg/mL) were added to pre-IVM medium for 0 h, 1 h and 2 h. The effects of E2 (0.5 ng/mL and 1 μg/mL) on cyclic adenosine monophosphate (cAMP) level in cumulus-oocyte complexes (COCs) and on oocyte meiotic progression were evaluated by ELISA and DAPI staining respectively. Third, the effects of E2 on the gene and protein expression of ERα and ERβ in COCs were investigated by Western blotting and real-time PCR. Afterward, ERβ and cAMP regulators were added to the 2-h pretreatment medium with or without E2 (0.5 ng/mL) to explore the possible interactions among E2, cAMP and ERβ. The results showed that both ERα and ERβ proteins were expressed in ovine cumulus layers and oocytes. E2 significantly increased intra-COC cAMP levels, maintained oocyte meiotic arrest, and promoted ERβ transcript and protein expression. E2 treatment increased the cAMP concentration, which was enhanced by ERβ agonist treatment and remarkably attenuated by ERβ inhibitor treatment. Forskolin plus IBMX treatment increased ERβ protein expression in COCs (P < 0.05), and this was attenuated by Rp-cAMP treatment. In conclusion, E2 (0.5 ng/mL) increased intra-COC cAMP levels by promoting ERβ expression, thereby maintaining oocyte meiotic arrest. cAMP in COCs has a positive feedback effect on ERβ expression, which provides a novel explanation for the positive role of E2 in regulating ovine follicle development and oocyte maturation.
Collapse
Affiliation(s)
- Bingxue Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yang An
- Inner Mongolia People's Hospital, Hohhot, 010020, PR China
| | - Yanyan Yang
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, PR China
| | - Yufen Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Kai Yu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yu Weng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Chenguang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| | - Boyang Yu
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
6
|
Deng K, Du D, Fan D, Pei Z, Zhang S, Xu C. Growth Hormone Promotes Oocyte Maturation In Vitro by Protecting Mitochondrial Function and Reducing Apoptosis. Reprod Sci 2023; 30:2219-2230. [PMID: 36694082 DOI: 10.1007/s43032-022-01147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023]
Abstract
Some studies have been conducted to explore the influence of growth hormone (GH) on oocytes in in vitro maturation (IVM); however, previous studies reporting showed different results, and the specific mechanisms were not clear. In the present study, GH supplementation improved oocyte maturation rate. The rate of germinal vesicle breakdown (GVBD) in the GH group was 83.9%, which was significantly higher than that (72.1%) in the control group (p = 0.001). The maturation rate of the GH group (79.2%) was significantly higher than that (65.4%) of the control group (p = 0.000). The fertilization (68.6 vs. 59.3%) and blastocyst (30 vs. 25.3%) rates showed an increasing trend in the GH group compared to those in controls. The dynamic parameters of nuclear maturation of oocytes were recorded by time-lapse monitoring system; oocytes in the GH group completed nuclear maturation earlier than did those in the control group. GH reduced cAMP levels to promote oocyte maturation. Single-cell RNA sequencing analysis revealed that the majority of differentially expressed genes (DEGs) involved in mitochondrial oxidative phosphorylation was upregulated in the GH group. Furthermore, the mitochondrial membrane potential of oocytes significantly increased, and the levels of intracellular reactive oxygen species (ROS) and Ca2+ largely decreased in the GH group. Finally, single-oocyte transcriptome analysis indicated that GH decreased the expression of apoptosis-related genes in oocytes. GH treatment reduced the expression of γH2AX and caspase-3. Therefore, GH improves the developmental potential of immature oocytes by reducing cAMP levels more rapidly within 0.5 h, protecting mitochondrial function, and reducing DNA damage and apoptosis.
Collapse
Affiliation(s)
- Ke Deng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Danfeng Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Dengxuan Fan
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Zhenle Pei
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Shuo Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Congjian Xu
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Gupta A, Trigun SK. Cilostamide, a phosphodiesterase 3A inhibitor, sustains meiotic arrest of rat oocytes by modulating cyclic adenosine monophosphate level and the key regulators of maturation promoting factor. J Cell Biochem 2022; 123:2030-2043. [PMID: 36125973 DOI: 10.1002/jcb.30328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Cilostamide, a phosphodiesterase 3A (Pde3A) inhibitor, is known to increase intraoocyte cyclic adenosine monophosphate (cAMP) level which is involved in sustaining meiotic arrest of the oocytes. To explore the mechanisms involved in the cilostamide-mediated meiotic arrest of the oocytes, the present study describes the effects of cilostamide on cAMP level and related factors involved in maturation of the oocytes at its different meiotic stages; diplotene, metaphase I (MI) and metaphase II (MII). The oocytes from these three stages were collected from rat ovary and incubated with 10 µM cilostamide for 3 h in CO2 incubator. The levels of cAMP, cyclic guanosine monophosphate (cGMP) and the key players of maintaining meiotic arrest during oocyte maturation; Emi2, Apc, Cyclin B1, and Cdk1, were analyzed in diplotene, MI and MII stages. Pde3A was found to be expressed at all three stages but with the lowest level in MI oocyte. As compared to the control sets, the cAMP concentration was found to be highest in MII whereas cGMP was highest in the diplotene stage of cilostamide-treated group. The treated group showed declined reactive oxygen species level as compared with the control counterparts. Relatively increased levels of the Emi2, Cyclin B1, and phosphorylated thr161 of Cdk1 versus declined levels of phosphorylated thr14/tyr15 of Cdk1 in diplotene and MII stage oocytes are known to be involved in maintaining meiotic arrest and all these factors were found to undergo similar pattern of change due to the treatment with cilostamide. The findings thus suggest that cilostamide treatment promotes meiotic arrest by Pde3A inhibition led increase of both cAMP and cGMP level vis-a-vis modulation of the related regulatory factors such as Emi2, CyclinB1, and phosphorylated status of Cdk1 in diplotene and MII stage oocytes. Such a mechanism of meiotic arrest could allow the oocyte to prepare itself for meiotic maturation and thereby to improve oocyte quality.
Collapse
Affiliation(s)
- Anumegha Gupta
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
The Simulated Physiological Oocyte Maturation (SPOM) system in domestic animals: A systematic review. Theriogenology 2022; 188:90-99. [DOI: 10.1016/j.theriogenology.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
|
9
|
cAMP Modulators before In Vitro Maturation Decrease DNA Damage and Boost Developmental Potential of Sheep Oocytes. Animals (Basel) 2021; 11:ani11092512. [PMID: 34573478 PMCID: PMC8467748 DOI: 10.3390/ani11092512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Oocyte in vitro maturation has massive potential for the generation of great numbers of embryos for research and for the application of assisted reproductive technologies, such as in vitro embryo production. However, the developmental ability of in vitro matured oocytes is lower than those matured in vivo. Here, incubating the oocytes with cAMP modulating agents for two hours before in vitro maturation decreased oocyte DNA damage and increased the number of embryos generated after in vitro fertilization. The present findings could help to develop new methods to improve the quality and developmental potential of in vitro matured oocytes. Abstract To date, the underlying mechanisms by which cAMP modulators act during in vitro maturation to improve oocyte developmental competence are poorly understood. Here, we sought to fill this knowledge gap by evaluating the use of phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and adenylyl cyclase activator forskolin during a culture period of 2 h before in vitro maturation (pre-IVM) on the nuclear and cytoplasmic maturation features in essential organelles, cumulus cells activity, and in vitro developmental potential of sheep oocytes. Results showed that pre-IVM treatment significantly decreased (p < 0.05) the DNA damage of mature oocytes (pre-IVM = 2.08% ± 3.51% vs. control = 20.58% ± 3.51%) and increased (p ≤ 0.05) expanded blastocyst rates compared to the control (from the total of oocytes: pre-IVM = 23.89% ± 1.47% vs. control = 18.22% ± 1.47%, and from the cleaved embryos: pre-IVM = 45.16% ± 1.73% vs. control = 32.88% ± 1.73%). Considering that oocytes are highly vulnerable to the accumulation of DNA damage because of exposure to in vitro culture conditions, our results suggest that the modulation of intra-oocyte cAMP levels with forskolin and IBMX before IVM might afford oocytes a more effective DNA repair mechanism to overcome damage obstacles and ultimately improve developmental competence. This previously unappreciated action of cAMP modulators could help to develop improved methods for assisted reproduction technologies in animal and clinical research.
Collapse
|
10
|
Metcalf ES, Masterson KR, Battaglia D, Thompson JG, Foss R, Beck R, Cook NL, O Leary T. Conditions to optimise the developmental competence of immature equine oocytes. Reprod Fertil Dev 2021; 32:1012-1021. [PMID: 32693913 DOI: 10.1071/rd19249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Optimising the developmental potential of immature equine oocytes and invitro-produced (IVP) embryos was explored through modifications of established media and holding temperature. In Experiment 1, delaying spontaneous resumption of meiosis through the process of simulated physiological oocyte maturation with the addition of the adenylate cyclase activator forskolin (50µM) and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (100µM) to overnight holding medium before maturation improved blastocyst production (P<0.05). In Experiment 2, the blastocyst production rate was increased significantly when cumulin (100ng mL-1) was added to the overnight holding or culture media (P<0.05). In Experiment 3, immature oocytes held overnight at 16°C before maturation had improved developmental competence than those held at 20°C and 5°C (P<0.05). There was no difference between maturation rates, but blastocyst formation per cleaved oocyte was significantly greater in oocytes held overnight at 16°C than at 20°C or 5°C. Furthermore, blastocyst formation per recovered oocyte and per fertilised oocyte was greater when oocytes were held before maturation at 16°C than at 5°C (P<0.05). In Experiment 4, the addition of sodium ascorbate (AC; 50µg mL-1) to the maturation and/or culture media of oocytes and IVP embryos did not improve blastocyst production, but did appear to lower cleavage rates compared with oocytes and embryos cultured without AC.
Collapse
Affiliation(s)
- Elizabeth S Metcalf
- Honahlee PC, 14005 SW Tooze Road, Sherwood, OR 97140, USA; and Andrology Division, Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, 3303S. Bond Avenue, Portland, OR 97239, USA; and Corresponding author.
| | - Keith R Masterson
- Andrology Division, Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, 3303S. Bond Avenue, Portland, OR 97239, USA
| | - David Battaglia
- Andrology Division, Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, 3303S. Bond Avenue, Portland, OR 97239, USA
| | - Jeremy G Thompson
- School of Medicine, The University of Adelaide, Medical School, South Adelaide, SA 5005, Australia
| | - Robert Foss
- Equine Medical Services, 5851E Deer Park Road, Columbia, MO 65201, USA
| | - Richard Beck
- In Foal, Inc., 39185 Diamond Valley Road, Hemet, CA 92543, USA
| | - Nancy L Cook
- Advanced Equine Reproduction, 1145 Arroyo Mesa, Solvang, CA 93463, USA
| | - Thomas O Leary
- Andrology Division, Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, 3303S. Bond Avenue, Portland, OR 97239, USA
| |
Collapse
|
11
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
12
|
Tscharke M, Kind K, Kelly J, Kleemann D, Len J. The Phosphodiesterase Inhibitor, Isobutyl-1-Methylxanthine Prevents the Sudden Drop in Cyclic Adenosine Monophosphate Concentration and Modulates Glucose Metabolism of Equine Cumulus-Oocyte Complexes Matured in Vitro. J Equine Vet Sci 2020; 91:103112. [PMID: 32684257 DOI: 10.1016/j.jevs.2020.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023]
Abstract
Spontaneous nuclear maturation of mammalian oocytes can occur when physically removed from the ovarian follicle during in vitro oocyte maturation (IVM), largely because of a decrease in cyclic adenosine monophosphate (cAMP) concentration. Modulation of oocyte cAMP during IVM by using phosphodiesterase inhibitors has been shown to maintain elevated oocyte cAMP concentrations and control meiotic resumption of bovine and ovine oocytes. This study determined the effect of inclusion of isobutyl-1-methylxanthine (IBMX) during collection and the first 12 hours of incubation of equine oocytes on cAMP concentration and glucose metabolism of cumulus-oocyte complexes (COCs). Abattoir-derived COCs were collected in aspiration medium with (Asp-IBMX) or without (Asp) IBMX. Cumulus-oocyte complexes were then incubated for 12 hours in IVM medium with (Mat-IBMX) or without (Mat) IBMX, followed by additional 24 hours in Mat medium. The cAMP concentration, glucose consumption, lactate production, and metaphase II rates of the COCs were assessed. Cumulus-oocyte complexes aspirated into Asp-IBMX (62.2 ± 2.6 fmol per COC) medium had higher cAMP concentration than Asp (31.8 ± 2.8 fmol per COC) control group (P < .05). Likewise, at 12 hours of IVM, Mat-IBMX group (33.2 ± 2.1 fmol per COC) had higher cAMP concentration than the Mat group (7.68 ± 0.5 fmol per COC; P < .05). Glucose consumption and lactate production were lower during the first 12 hours of incubation in COCs cultured in Mat-IBMX (P < .05). Isobutyl-1-methylxanthine prevented the rapid drop in cAMP concentration and altered metabolism of glucose by the COC. Preventing the sudden drop in cAMP prevents the premature nuclear maturation of in vitro-matured oocytes causing poor developmental competence.
Collapse
Affiliation(s)
- Megan Tscharke
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Karen Kind
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Jennifer Kelly
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, Australia
| | - Dave Kleemann
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, Australia
| | - Jose Len
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| |
Collapse
|
13
|
Gupta A, Chaube SK. Cilostamide and rolipram prevent spontaneous meiotic resumption from diplotene arrest in rat oocytes cultured in vitro. Eur J Pharmacol 2020; 878:173115. [PMID: 32302597 DOI: 10.1016/j.ejphar.2020.173115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022]
Abstract
The involvement of specific phosphodiesterases (PDEs) in the modulation of cAMP and thereby spontaneous meiotic resumption remains poorly understood. This work aims to evaluate the effects of cilostamide and rolipram (PDE 3A and PDE 4D inhibitors) on spontaneous meiotic resumption from diplotene arrest in rat oocytes cultured in vitro. For this purpose, diplotene-arrested cumulus oocyte complexes (COCs) were collected from rat ovary. The COCs and denuded oocytes were exposed to various concentrations of cilostamide (0.0, 2.5, 5.0 and 10 μM) and rolipram (0, 10, 50 and 100 μM) for various times (0, 3, 5, 7, 14, 16, 18, 20, 22 and 24 h). Cilostamide inhibited spontaneous meiotic resumption in a concentration- and time-dependent manner in COCs and denuded oocytes. Although rolipram showed inhibition of spontaneous meiotic resumption up to some extent, cilostamide was more potent to prevent spontaneous meiotic resumption in both COCs and denuded oocytes. Cilostamide significantly reduced PDE 3A expression, increased cAMP level and prevented spontaneous meiotic resumption in COCs and denuded oocytes. Although rolipram inhibited PDE 4D expression in cumulus cells, increased cAMP level but was not sufficient to prevent spontaneous meiotic resumption. We conclude that both drugs prevent spontaneous resumption from diplotene-arrest through PDE 3A/PDE 4D-cAMP mediated pathway. However, as compare to rolipram, cilostamide was more potent in preventing spontaneous resumption from diplotene-arrest in rat oocytes cultured in vitro. Thus, cilostamide could be used as a potential candidate for the development of female contraceptive drug in future.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
14
|
Wu XC, Han Z, Hao X, Zhao YT, Zhou CJ, Wen X, Liang CG. Combined use of dbcAMP and IBMX minimizes the damage induced by a long-term artificial meiotic arrest in mouse germinal vesicle oocytes. Mol Reprod Dev 2020; 87:262-273. [PMID: 31943463 DOI: 10.1002/mrd.23315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2019] [Indexed: 11/11/2022]
Abstract
Phosphodiesterase (PDE)-mediated reduction of cyclic adenosine monophosphate (cAMP) activity can initiate germinal vesicle (GV) breakdown in mammalian oocytes. It is crucial to maintain oocytes at the GV stage for a long period to analyze meiotic resumption in vitro. Meiotic resumption can be reversibly inhibited in isolated oocytes by cAMP modulator forskolin, cAMP analog dibutyryl cAMP (dbcAMP), or PDE inhibitors, milrinone (Mil), Cilostazol (CLZ), and 3-isobutyl-1-methylxanthine (IBMX). However, these chemicals negatively affect oocyte development and maturation when used independently. Here, we used ICR mice to develop a model that could maintain GV-stage arrest with minimal toxic effects on subsequent oocyte and embryonic development. We identified optimal concentrations of forskolin, dbcAMP, Mil, CLZ, IBMX, and their combinations for inhibiting oocyte meiotic resumption. Adverse effects were assessed according to subsequent development potential, including meiotic resumption after washout, first polar body extrusion, early apoptosis, double-strand DNA breaks, mitochondrial distribution, adenosine triphosphate levels, and embryonic development. Incubation with a combination of 50.0 μM dbcAMP and 10.0 μM IBMX efficiently inhibited meiotic resumption in GV-stage oocytes, with low toxicity on subsequent oocyte maturation and embryonic development. This work proposes a novel method with reduced toxicity to effectively arrest and maintain mouse oocytes at the GV stage.
Collapse
Affiliation(s)
- Xue-Chen Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yi-Tong Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
15
|
Park KM, Kim KJ, Jin M, Han Y, So KH, Hyun SH. The use of pituitary adenylate cyclase-activating polypeptide in the pre-maturation system improves in vitro developmental competence from small follicles of porcine oocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1844-1853. [PMID: 31480175 PMCID: PMC6819676 DOI: 10.5713/ajas.19.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We investigated how pituitary adenylate cyclase-activating polypeptide (PACAP) affects embryonic development during pre-in vitro maturation (pre-IVM) using porcine oocytes isolated from small follicles. METHODS We divided the follicles into the experimental groups by size (SF, small follicles; MF, medium follicles) and treated with and without PACAP and cultured for 18 hours (Pre-SF[-]PACAP; without PACAP, Pre-SF[+]PACAP; with PACAP) before undergoing IVM. The gene expression related to extracellular matrix formation (amphiregulin, epiregulin, and hyaluronan synthase 2 [HAS2]) and apoptosis (Bcl-2-associated X [BAX], B-cell lymphoma 2, and cysteine-aspartic acid protease 3) was investigated after maturation. The impact on developmental competence was assessed by the cleavage and blastocyst rate and total cell number of blastocysts in embryos generated from parthenogenesis (PA) and in vitro fertilization (IVF). RESULTS Cleavage rates in the Pre-SF(+)PACAP after PA were significantly higher than SF and Pre-SF(-)PACAP (p<0.05). The cleavage rates between MF and Pre- SF(+)PACAP groups yielded no notable differences after IVF. Pre-SF(+)PACAP displayed the higher rate of blastocyst formation and greater total cell number than SF and Pre-SF(-)PACAP (p<0.05). Cumulus cells showed significant upregulation of HAS2 mRNA in the Pre-SF(+)PACAP compared to the SF (p<0.05). In comparison to other groups, the Pre-SF(+)PACAP group displayed a downregulation in mRNA expression of BAX in matured oocytes (p<0.05). CONCLUSION The PACAP treatment during pre-IVM improved the developmental potential of porcine oocytes derived from SF by regulating cumulus expansion and apoptosis of oocytes.
Collapse
Affiliation(s)
- Kyu-Mi Park
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyu-Jun Kim
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Minghui Jin
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Yongquan Han
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyoung-Ha So
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
16
|
Ramos Leal G, Santos Monteiro CA, Souza-Fabjan JMG, de Paula Vasconcelos CO, Garcia Nogueira LA, Reis Ferreira AM, Varella Serapião R. Role of cAMP modulator supplementations during oocyte in vitro maturation in domestic animals. Anim Reprod Sci 2018; 199:1-14. [PMID: 30449707 DOI: 10.1016/j.anireprosci.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important molecule in signal transduction within the cell, functioning as a second cell messenger of gonadotrophin stimulation. The concentration of cAMP in cumulus-oocyte complexes (COCs) is known to be controlled through modulation of its synthesis by adenylyl cyclase (AC) and by degradation through the cyclic nucleotide phosphodiesterase (PDE) enzymes. One of the main obstacles for in vitro embryo production is the optimization of reproduction processes that occur in oocyte maturation. The function of cAMP is important in maintaining meiotic arrest in mammalian oocytes. When the oocyte is physically removed from the antral follicle for in vitro maturation (IVM), intra-oocyte cAMP concentrations decrease and spontaneous meiotic resumption begins, due to the depletion of inhibitory factors from the follicle. In many studies, relatively greater cAMP concentrations before IVM has been reported to improve oocyte competence, leading to subsequent benefits in embryonic development in different species. There, therefore, has been an increase in oocyte cAMP concentrations with several treatments and different approaches, such as invasive AC, stimulators of AC activity, PDE inhibitors, and cAMP analogs. The aim of this review is to comprehensively evaluate and provide data related to (i) the use of cAMP modulators during IVM and the effects on completion of meiosis and cytoplasmic reorganization, which are required for development of oocytes with the capacity to contribute to fertilization and subsequent embryonic development; and (ii) the main cAMP modulators and the effects when used in oocyte IVM.
Collapse
Affiliation(s)
- Gabriela Ramos Leal
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil.
| | - Clara Ana Santos Monteiro
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Joanna Maria Gonçalves Souza-Fabjan
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil.
| | - Carlos Otávio de Paula Vasconcelos
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Luiz Altamiro Garcia Nogueira
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Ana Maria Reis Ferreira
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Raquel Varella Serapião
- Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO RIO) - Avenida São Boa Ventura, 770, 24120-19, Fonseca, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. Int J Vet Sci Med 2018; 6:S15-S26. [PMID: 30761316 PMCID: PMC6161858 DOI: 10.1016/j.ijvsm.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Sheep is an important livestock in the world providing meat, milk and wool for human beings. With increasing human population, the worldwide needs of production of sheep have elevated. To meet the needs, the assistant reproductive technology including ovine in vitro embryo production (ovine IVP) is urgently required to enhance the effective production of sheep in the world. To learn the status of ovine IVP, we collected some publications related to ovine IVP through PubMed and analyzed the progress in ovine IVP made in the last five years (2012-2017). We made comparisons of these data and found that the recent advances in ovine IVP has been made slowly comparable to that of ovine IVP two decades ago. Therefore, we suggested two strategies or approaches to tackle the main problems in ovine IVP and expect that the efficiency of ovine IVP could be improved significantly when the approaches would be implemented.
Collapse
Affiliation(s)
- Jie Zhu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Adel R. Moawad
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, PO BOX 12211, Giza, Egypt
| | - Chun-Yu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Hui-Feng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jing-Yu Ren
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yan-Feng Dai
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
18
|
Zhang T, Fan X, Li R, Zhang C, Zhang J. Effects of pre-incubation with C-type natriuretic peptide on nuclear maturation, mitochondrial behavior, and developmental competence of sheep oocytes. Biochem Biophys Res Commun 2018; 497:200-206. [DOI: 10.1016/j.bbrc.2018.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023]
|
19
|
Zhang M, Zhang CX, Pan LZ, Gong S, Cui W, Yuan HJ, Zhang WL, Tan JH. Meiotic arrest with roscovitine and follicular fluid improves cytoplasmic maturation of porcine oocytes by promoting chromatin de-condensation and gene transcription. Sci Rep 2017; 7:11574. [PMID: 28912491 PMCID: PMC5599650 DOI: 10.1038/s41598-017-11970-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/01/2017] [Indexed: 01/10/2023] Open
Abstract
The developmental capacity of in vitro matured oocytes is inferior to that of the in vivo matured ones due to insufficient cytoplasmic maturation. Although great efforts were made to accomplish better cytoplasmic maturation by meiotic arrest maintenance (MAM) before in vitro maturation (IVM), limited progress has been achieved in various species. This study showed that MAM of porcine oocytes was better achieved with roscovitine than with dibutyryl cyclic adenosine monophosphate (db-cAMP) or 3-isobutyl-1-methylxanthine. Oocyte developmental competence after IVM was significantly improved following MAM in 199 + FF medium (TCM-199 containing 10% porcine follicular fluid and 25 µM roscovitine) to a level even higher than that in control oocytes matured without pre-MAM. Observations on other markers further confirmed the positive effects of MAM in 199 + FF on oocyte cytoplasmic maturation. During MAM culture in 199 + FF, re-decondensation (RDC) of condensed chromatin occurred, and transcription of genes beneficial to cytoplasmic maturation was evident in some of the oocytes with surrounded nucleoli (SN). However, MAM with db-cAMP neither induced RDC nor improved oocyte developmental potential. Together, the results suggest that MAM in the presence of FF and roscovitine improved the developmental competence of porcine oocytes by promoting a pre-GVBD chromatin de-condensation and expression of beneficial genes.
Collapse
Affiliation(s)
- Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Chuan-Xin Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Liu-Zhu Pan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Wei Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Wei-Ling Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China.
| |
Collapse
|
20
|
Cui J, Xie X. Non-coding RNAs: emerging regulatory factors in the derivation and differentiation of mammalian parthenogenetic embryonic stem cells. Cell Biol Int 2017; 41:476-483. [PMID: 28220611 DOI: 10.1002/cbin.10751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023]
Abstract
Parthenogenetic embryonic stem cells (PESCs) are ESCs derived from early parthenogenetic embryos. Haploid PESCs, containing haploid DNA, originate from a single sperm or occyte, while, diploid PESCs originate from two fused occytes. Most PESC lines used so far are diploid. PESCs exhibit representative pluripotent stem cell features, such as the capacity for self-renewal and the pariticular molecular signatures. Whereas, PESCs display distinctive properties, such as differential regulation of X-chromosome inactivation (XCI) and divergent monitor of genes involved in multiple biological processes. PESCs are considered promising in the regeneration medicine and developmental biology. Non-coding RNAs (ncRNAs), especially miRNAs and lncRNAs, have garnered increasing attention over the past 2 decades. They are now known to be involved in almost all cellular processes due to their full-range regulation of gene expression. Numerous studies have indicated that embryonic stem cells (ESCs) displayed distinct signatures of ncRNA genes, which play key roles in the pluripotency and self renewal of ESCs. However, the expression pattern of ncRNAs in PESCs and their roles in the derivation and differentiation of PESCs were rarely reported. In this paper, we reviewed recent research on the derivation and differentiation of PESCs and describe the emerging role of ncRNAs in these processes.
Collapse
Affiliation(s)
- Jihong Cui
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, China.,College of Life Science, Northwest University, Xi'an, 710069, China.,Institute for Integrated Medical Information (IIMI), Xi'an, 710018, China
| |
Collapse
|
21
|
Botigelli RC, Razza EM, Pioltine EM, Nogueira MFG. New approaches regarding the in vitro maturation of oocytes: manipulating cyclic nucleotides and their partners in crime. JBRA Assist Reprod 2017; 21:35-44. [PMID: 28333031 PMCID: PMC5365199 DOI: 10.5935/1518-0557.20170010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several discoveries have been described recently (5-10 years) about the biology of ovarian follicles (oocyte, cumulus cells and granulosa cells), including new aspects of cellular communication, the control of oocyte maturation and the acquisition of oocyte competence for fertilization and further embryo development. These advances are nourishing assisted reproduction techniques (ART) with new possibilities, in which novel culture systems are being developed and tested to improve embryo yield and quality. This mini-review aims to describe how the recent knowledge on the physiological aspects of mammalian oocyte is reflecting as original or revisited approaches into the context of embryo production. These new insights include recent findings on the mechanisms that control oocyte maturation, especially modulating intraoocyte levels of cyclic nucleotides during in vitro maturation using endogenous or exogenous agents. In this mini-review we also discuss the positive and negative effects of these manipulations on the outcoming embryo.
Collapse
Affiliation(s)
- Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Eduardo Montanari Razza
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Elisa Mariano Pioltine
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil.,Department of Biological Sciences, Faculty of Sciences and Letters, University of São Paulo State, Assis, São Paulo, Brazil
| |
Collapse
|
22
|
Li QY, Lou J, Yang XG, Lu YQ, Lu SS, Lu KH. Effect of the meiotic inhibitor cilostamide on resumption of meiosis and cytoskeletal distribution in buffalo oocytes. Anim Reprod Sci 2016; 174:37-44. [DOI: 10.1016/j.anireprosci.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
|
23
|
Meiotic arrest as an alternative to increase the production of bovine embryos by somatic cell nuclear transfer. ZYGOTE 2016; 25:32-40. [PMID: 27780485 DOI: 10.1017/s0967199416000289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aimed to evaluate the effect of meiotic arrest using phosphodiesterase type 3A (PDE 3A) inhibitors, cilostamide and C-type natriuretic peptide (NPPC), on pre-maturation (PM) of oocytes to be used in the production of cloned embryos. Nuclear maturation, in vitro embryo production (IVP), somatic cell nuclear transfer (SCNT) and parthenogenetic activation (PA), and total cells number of cloned embryos were evaluated. The results were analysed by chi-squared and Kruskal-Wallis test with a P-value 0.05) between control and PM, both for cleavage (78.2% and 76.9%) and blastocyst (35.5% and 29.3%) rates. After SCNT, cleavage rate was also similar (P > 0.05) between control and PM (66% and 51.9%) however, blastocyst rate was lower (P < 0.05) in the PM group than in the control group (7.4% and 30.2%). After 6 h of PM with 100 nM of NPPC, approximately 84.9% of the oocytes remained at GV. No difference was found between control and PM in cleavage (69.2% and 76.1%) and blastocyst rates (37,4% and 35%) after IVP. Similarly, no differences between PM and control groups were observed for cleavage (69.2% and 68.4%) and blastocyst (24.4% and 21.5%) rates. SCNT and PA embryos from control or PM oocytes had similar total cell number. It can be concluded that PM for 6 h with 100 nM NPPC is feasible for cloned embryo production without affecting embryo outcome.
Collapse
|
24
|
Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 2016; 152:R143-57. [PMID: 27422885 DOI: 10.1530/rep-15-0606] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
The cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology have been at the forefront of oocyte research for decades, and many of the long-standing controversies in relation to the regulation of oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of natriuretic peptides and cGMP - inhibiting the hydrolysis of intra-oocyte cAMP - and that the pre-ovulatory gonadotrophin surge reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle. Research over the past two decades has conclusively demonstrated that this surge in cAMP is important for the subsequent developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practised clinically do not recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared with clinical IVF. This review particularly focuses on this latter aspect - the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and fertility treatment options.
Collapse
Affiliation(s)
- R B Gilchrist
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - A M Luciano
- Reproductive and Developmental Biology LaboratoryDepartment of Health, Animal Science and Food Safety, University of Milan, Milano, Italy
| | - D Richani
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - H T Zeng
- Center for Reproductive MedicineSixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - X Wang
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia Department of Obstetrics and GynaecologySt George Public Hospital, Sydney, Australia
| | - M De Vos
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Sugimura
- Institute of AgricultureDepartment of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - J Smitz
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - F J Richard
- Centre de Recherche en Biologie de la ReproductionDépartement des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - J G Thompson
- School of MedicineRobinson Research Institute and ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Effects of cilostamide and/or forskolin on the meiotic resumption and development competence of growing ovine oocytes selected by brilliant cresyl blue staining. Theriogenology 2016; 85:1483-90. [DOI: 10.1016/j.theriogenology.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 11/23/2022]
|
26
|
Gilchrist RB, Zeng HT, Wang X, Richani D, Smitz J, Thompson JG. Reevaluation and evolution of the simulated physiological oocyte maturation system. Theriogenology 2015; 84:656-7. [PMID: 25958085 DOI: 10.1016/j.theriogenology.2015.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/18/2022]
Affiliation(s)
- R B Gilchrist
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.
| | - H T Zeng
- Center for Reproductive Medicine, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - X Wang
- Department of Obstetrics and Gynaecology, St George Public Hospital, Sydney, New South Wales, Australia
| | - D Richani
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - J Smitz
- Research Group Follicle Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - J G Thompson
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, South Australia, Australia
| |
Collapse
|