1
|
Knox RV. Follicle development in pigs: State of the art. Mol Reprod Dev 2023; 90:480-490. [PMID: 35642618 DOI: 10.1002/mrd.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
Understanding the factors and pathways involved with recruitment, atresia, and selection of follicles in the pig, may provide insight into approaches to limit fertility failures. Antral follicles depend upon FSH to the 2-3 mm stage, become codependent upon LH at 4-5 mm, and rely on LH when >5 mm. Within the follicle, gonadotropin binding, steroids, growth factors, and inhibin interact to determine the fate of the follicle. Continuous recruitment appears likely for follicles, and once >1 mm, they may have a limited period for survival, before selection or atresia. If true, then the number of healthy follicles that can respond to a hormone signal for selection, could vary by size and development stage. Which follicles are selected may depend upon their age, numbers of capillaries, granulosa and thecal cells, and FSH and LH receptors. This might also suggest that factors such as management, nutrition, and stress in prior weeks, could affect different cohorts of follicles to determine which of those from the ovarian population will be selected.
Collapse
Affiliation(s)
- Robert V Knox
- Department of Animal Sciences, University of Illinois Champaign-Urbana, Champaign-Urbana, Illinois, USA
| |
Collapse
|
2
|
Arend LS, Knox RV, Greiner LL, Graham AB, Connor JF. Effects of feeding melatonin during proestrus and early gestation to gilts and parity 1 sows to minimize effects of seasonal infertility1. J Anim Sci 2020; 97:4635-4646. [PMID: 31563944 DOI: 10.1093/jas/skz307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/25/2019] [Indexed: 11/14/2022] Open
Abstract
This study tested whether supplemental melatonin given to mimic the extended nighttime melatonin pattern observed in the higher fertility winter season could minimize infertility during summer and fall in swine. Exogenous melatonin was fed during periods coinciding with follicle selection, corpus luteum formation, pregnancy recognition, and early embryo survival. Experiments were conducted at a commercial farm in 12 sequential replicates. In Exp. 1a, mature gilts (n = 420) that had expressed a second estrus were assigned by weight to receive once daily oral Melatonin (MEL, 3 mg) or Control (CON, placebo) at 1400 h for 3 wk starting before insemination at third estrus. In Exp. 1b, parity 1 sows (n = 470) were randomly assigned by lactation length to receive MEL or CON for 3 wk, starting 2 d before weaning. Follicles, estrus, pregnancy, and farrowing data were analyzed for the main effects of treatment, season (4-wk periods), and their interaction. Environmental measures were also analyzed for reproductive responses. In Exp. 1a, there was no effect (P > 0.10) of MEL on age at third estrus (203 d), follicle size after 7 d of treatment (5.0 mm), estrous cycle length (22.6 d), return to service (9.2%), farrowing rate (FR, 80.0%), or total born pigs (TB, 13.6). However, there was an effect of season (P = 0.03) on number of follicles and on gilts expressing estrus within 23 d of the previous estrus (P < 0.005). In Exp. 1b, there was no effect of MEL (P > 0.10) on follicle measures, wean to estrous interval, FR (84.0%), or TB (13.0). But MEL (73.5%) reduced (P = 0.03) estrous expression within 7 d of weaning compared with CON (82.0%) and season (P = 0.001) decreased FR by ~14.0% during mid summer. Also, gilts and parity 1 sows exposed to low light intensity (<45 lx) during breeding had reduced conception (-8%) and farrowing (-15%) rates, compared with higher light intensity. Similarly, high temperatures (>25 °C) during breeding also reduced gilt conception rates by 7%. Although there was clear evidence of seasonal fertility failures in gilts and sows, MEL treatment did not improve fertility in gilts and reduced estrus in parity 1 sows. It is possible that differences in lighting and thermal environments before breeding could explain the differential response to MEL in sows and gilts.
Collapse
Affiliation(s)
- Lidia S Arend
- Department of Animal Sciences, University of Illinois, Champaign-Urbana, IL
| | - Robert V Knox
- Department of Animal Sciences, University of Illinois, Champaign-Urbana, IL
| | | | | | | |
Collapse
|
3
|
Boafo A, Greenham S, Alenezi S, Robillard R, Pajer K, Tavakoli P, De Koninck J. Could long-term administration of melatonin to prepubertal children affect timing of puberty? A clinician's perspective. Nat Sci Sleep 2019; 11:1-10. [PMID: 30774488 PMCID: PMC6362935 DOI: 10.2147/nss.s181365] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exogenous melatonin can be used to treat sleep disturbance in adults, children, and adolescents. While its short-term use is considered safe, there are some concerns that long-term use might delay children's sexual maturation, possibly by disrupting the decline in nocturnal melatonin levels that occur at the onset of puberty. This narrative review aimed to summarize some of the current knowledge about the potential effects of exogenous melatonin on puberty. We found no clinical studies that experimentally tested the effects of melatonin on pubertal timing in children, but we reviewed the small number of observational studies. We also drew on animal data to try to answer our question. The photoperiod and melatonin-mediated seasonal transitions in sexual activity and breeding in some mammals across the seasons have been used as a model of sexual development in mammals, including humans. The switch from non-sexual activity (in the non-breeding period) to sexual activity (in the breeding period) has been likened to the onset of puberty as there are similarities between the two. We conclude that to investigate an association between melatonin and pubertal timing, it will be important to conduct long-term randomized controlled trials of latency age children and also examine the cellular and systems-level interactions between melatonin and kisspeptin, a recently identified neuropeptide with a locus of action at the gonadotropin releasing hormone neurons that is important in contributing to the timing of puberty onset.
Collapse
Affiliation(s)
- Addo Boafo
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, .,Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,
| | - Stephanie Greenham
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, .,School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Shuliweeh Alenezi
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, .,Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,
| | - Rébecca Robillard
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Sleep Research Unit, Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Kathleen Pajer
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, .,Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,
| | - Paniz Tavakoli
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada,
| | - Joseph De Koninck
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Sleep Research Unit, Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
4
|
King RH. Seasonal infertility in pigs: what have we achieved and where are we up to? ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The most common manifestations of seasonal infertility are delayed puberty, prolonged weaning to oestrus intervals and a reduced farrowing rate brought about by increased returns to oestrus, including a proportionally higher incidence of irregular returns to oestrus. Over the past 40 years, there has been considerable investment in Australian pig research that has generated extensive knowledge about the physiological mechanisms behind seasonal infertility. While some of the physiological mechanisms allowing the expression of seasonal infertility still remain unclear, a number of possible intervention strategies have been developed and investigated to ameliorate the effects of seasonal infertility in commercial production. For commercial pork producers, there is considerable information available that is based on both research and practical experience, which the farmers can use to identify strategies to minimise the impact of seasonal infertility on the farm. The industry still provides some support to research and development efforts to address seasonal infertility, although, in the future, it may be more targeted to identifying interventions to ameliorate the impact of seasonal infertility in affected herds, rather than undertaking intensive studies into the possible mechanisms and reasons behind this very complex syndrome.
Collapse
|