1
|
Nestor CC, Merkley CM, Lehman MN, Hileman SM, Goodman RL. KNDy neurons as the GnRH pulse generator: Recent studies in ruminants. Peptides 2023; 164:171005. [PMID: 36990389 PMCID: PMC10164117 DOI: 10.1016/j.peptides.2023.171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
This review considers three aspects of recent work on the role of KNDy neurons in GnRH pulse generation in ruminants. First, work on basic mechanisms of pulse generation includes several tests of this hypothesis, all of which support it, and evidence that Kiss1r-containing neurons form a positive feedback circuit with the KNDy neural network that strengthen the activity of this network. The second section on pathways mediating external inputs focuses on the influence of nutrition and photoperiod, and describes the evidence supporting roles for proopiomelanocortin (POMC) and agouti-related peptide (AgRP) afferents to KNDy cells in each of these. Finally, we review studies exploring the potential applications of manipulating signaling by kisspeptin, and the other KNDy peptides, to control reproductive function in domestic animals and conclude that, although these approaches show some promise, they do not have major advantages over current practices at this time.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
2
|
Fanelli D, Beltramo M, Conte G, Cerretini B, Lomet D, Rota A, Aucagne V, Camillo F, Panzani D. The Kisspeptin analogue C6 induces ovulation in jennies. Theriogenology 2022; 189:107-112. [PMID: 35738032 DOI: 10.1016/j.theriogenology.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Kisspeptins (KPs) are the most potent stimulating neurotransmitters of GnRH release, and consequently KP administration triggers LH and/or FSH release. In small ruminants, KP or its analogs induced an LH surge followed by ovulation in both cyclic and acyclic animals, while in the mare KP only increased LH plasma levels but failed to induce ovulation. This study in jennies compares the endocrinological effects, ovulatory and pregnancy rates of the KP analog C6 and the GnRH analog buserelin acetate. The ovarian activity of nine Amiata jennies was monitored daily by transrectal ultrasound for three complete estrous cycles. Jennies in estrus were assigned, to one of three treatment groups: 50 nmol of the KP analog C6 (injected twice, 24 h apart, C6 group); 0.4 mg buserelin acetate (injected once, Bu group); and 2 mL of saline (injected once, CTRL group). Blood samples were collected at Day-1 (-24 h) Day0 (h0, before treatment), h2, h4, h6, h8, h10, h24 (before second treatment with C6), h26, h28, h30, h32, h34, h48 and every 24 h until ovulation. Jennies were inseminated once at h24 with fresh extended semen from a donkey stallion. Pregnancy diagnoses were performed 14 days after ovulation. On days 5, 10, and 14 after ovulation, for every CL the cross-sectional area (CSA) and the vascularized area (VA) were recorded by color doppler ultrasound and measured. Significantly higher plasma LH levels were found after induction between the Bu and CTRL groups at h6 and h8 (P < 0.05), while tendentially higher differences were found between the Bu/C6 groups and CTRL at h10. Five/9, 4/9, and 2/9 jennies ovulated between 24 and 48 h after induction from the Bu, C6, and CTRL groups respectively, (P > 0.05). Correlations between corpora lutea CSA and VA with serum progesterone concentration were r = 0.31, P = 0.01, r = 0.38, P = 0.01, respectively. Pregnancy rates after artificial insemination did not differ among groups (CTRL: 6/9, 66.7%; C6: 7/9, 77.8%; Bu: 6/9, 66.7%; P > 0.05). Ovulation rates after C6 treatment were comparable to that of Bu, although not different from the CTRL. Pregnancy rates were comparable to the literature in terms of fresh extended donkey semen in every group. This study suggests that stimulation of the Kp system in jennies, in contrast to findings observed in mares, induces ovulation. Further studies using higher doses and/or more animals are needed to better characterize the efficacy of C6 in jennies.
Collapse
Affiliation(s)
- Diana Fanelli
- Ospedale Didattico Veterinario "Mario Modenato", Dipartimento di Scienze Veterinarie, Università di Pisa. Via Livornese (Lato Monte), 1289, 56122, San Piero a Grado, Pisa, PI, Italy
| | - Massimiliano Beltramo
- Physiologie de la Reproduction et des Comportements (PR China) UMR7247 CNRS, IFCE, INRAE, Université de Tours, F-37380, Nouzilly, France
| | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Pisa, Italy
| | - Benedetta Cerretini
- Ospedale Didattico Veterinario "Mario Modenato", Dipartimento di Scienze Veterinarie, Università di Pisa. Via Livornese (Lato Monte), 1289, 56122, San Piero a Grado, Pisa, PI, Italy
| | - Didier Lomet
- Physiologie de la Reproduction et des Comportements (PR China) UMR7247 CNRS, IFCE, INRAE, Université de Tours, F-37380, Nouzilly, France
| | - Alessandra Rota
- Ospedale Didattico Veterinario "Mario Modenato", Dipartimento di Scienze Veterinarie, Università di Pisa. Via Livornese (Lato Monte), 1289, 56122, San Piero a Grado, Pisa, PI, Italy
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, Rue Charles Sadron CS 80054 45071 ORLEANS Cedex 2, Orleans, France
| | - Francesco Camillo
- Ospedale Didattico Veterinario "Mario Modenato", Dipartimento di Scienze Veterinarie, Università di Pisa. Via Livornese (Lato Monte), 1289, 56122, San Piero a Grado, Pisa, PI, Italy
| | - Duccio Panzani
- Ospedale Didattico Veterinario "Mario Modenato", Dipartimento di Scienze Veterinarie, Università di Pisa. Via Livornese (Lato Monte), 1289, 56122, San Piero a Grado, Pisa, PI, Italy.
| |
Collapse
|
3
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
4
|
The kisspeptin analog C6 is a possible alternative to PMSG (pregnant mare serum gonadotropin) for triggering synchronized and fertile ovulations in the Alpine goat. PLoS One 2019; 14:e0214424. [PMID: 30921391 PMCID: PMC6438634 DOI: 10.1371/journal.pone.0214424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
In temperate regions goat’s reproduction is seasonal. To obtain year-round breeding, hormonal treatments are currently applied. These treatments usually combine a progesterone analog with the pregnant mare serum gonadotropin (PMSG). However, their use has significant ethical and environmental drawbacks. Therefore, alternative methods to manage reproduction are needed. The discovery that in mammals the neuropeptide kisspeptin is a major positive regulator of hypothalamo-pituitary gonadal axis offered an attractive alternative strategy to control reproduction. We have previously designed a kisspeptin analog, called C6, which offers pharmacological advantages over endogenous kisspeptin. These include a longer lasting effect and enhanced activity following intramuscular injection. In the present work, we evaluated C6 effect on LH and FSH plasma concentrations in the Alpine goat breed and tested whether C6 could replace PMSG to trigger ovulation. An intramuscular injection of C6 (15 nmol/doe) given 24 hours after the end of progestogen treatment induced a surge-like peak of both LH and FSH. This was followed by an increase of progesterone, a hallmark of ovulation induction and corpus luteus formation. These results were obtained at three different time of the year: during the breeding season, the non-breeding season and at the onset of the breeding season. Furthermore, we compared the efficacy of C6 and PMSG to induce fertile ovulations when these treatments are given at the onset of the breeding season and are followed by artificial insemination. The results of this first attempt were extremely promising with gestation rates of 45% and 64% for C6 and PMSG respectively. Pending optimization of the treatment procedure in order to improve efficacy, kisspeptin analogs could be the long sought-after alternative to PMSG.
Collapse
|
5
|
Macedo G, Mingoti R, Batista E, Monteiro B, Vieira L, Barletta R, Wiltbank M, Nogueira G, Rennó F, Maio J, Baruselli P. Profile of LH release in response to intramuscular treatment with kisspeptin in Bos indicus and Bos taurus prepubertal heifers. Theriogenology 2019; 125:64-70. [DOI: 10.1016/j.theriogenology.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
|
6
|
|
7
|
Beltramo M, Decourt C. Towards new strategies to manage livestock reproduction using kisspeptin analogs. Theriogenology 2017; 112:2-10. [PMID: 28916209 DOI: 10.1016/j.theriogenology.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022]
Abstract
The discovery of the hypothalamic neuropeptide kisspeptin and its receptor (KISS1R) have dramatically improved our knowledge about the central mechanisms controlling reproduction. Kisspeptin neurons could be considered the hub where internal and external information controlling reproduction converge. The information is here elaborated and the command dispatched to GnRH neurons, the final output of the brain system controlling reproduction. Several studies have shown that in mammals administration of kisspeptin could finely modulate many aspects of reproduction from puberty to ovulation. For example in ewes kisspeptin infusion triggered ovulation during the non-breeding season and in prepubertal rat repeated injections advanced puberty onset. However, especially in livestock, the suboptimal pharmacological properties of endogenous kisspeptin, notably it short half-life and consequently its poor pharmacodynamics, fetters its use to experimental setting. To overcome this issue synthetic KISS1R agonists, mainly based on kisspeptin backbone, were created. Their more favorable pharmacological profile, longer half-life and duration of action, allowed to perform promising initial experiments for controlling ovulation and puberty. Additional experiments and further refinement of analogs would still be necessary to exploit fully the potential of targeting the kisspeptin system. Nevertheless, it is already clear that this new strategy may represent a breakthrough in the field of reproduction control.
Collapse
Affiliation(s)
- M Beltramo
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| | - C Decourt
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| |
Collapse
|
8
|
Kanai N, Endo N, Ohkura S, Wakabayashi Y, Matsui H, Matsumoto H, Ishikawa K, Tanaka A, Watanabe T, Okamura H, Tanaka T. An administration of TAK-683 at a minimally effective dose for luteinizing hormone stimulation under the absence of the ovary induces luteinizing hormone surge in ovary-intact goats. J Reprod Dev 2017; 63:305-310. [PMID: 28344194 PMCID: PMC5481633 DOI: 10.1262/jrd.2016-184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate hormonal responses and their association with the TAK-683 blood concentrations in goats administered TAK-683 at a low dose, which had been previously determined as the minimally effective dose
for luteinizing hormone (LH) stimulation in ovariectomized goats. In Experiment 1, 5 µg of TAK-683 treatment had no significant stimulatory effect on LH secretion in ovariectomized Shiba goats (n = 4). In Experiment 2, cycling
goats received the treatment of prostaglandin F2α and progesterone-releasing controlled internal drug releasing (CIDR) to induce the follicular phase, then they were treated with 5 µg of TAK-683 (hour 0) intravenously
(n = 4, IV) or subcutaneously (n = 3, SC) or with vehicle intravenously (n = 4, control) at 12 h after CIDR removal. Blood samples were collected at 10-min (–2–6 h), 2-h (6–24 h), or 6-h (24–48 h) intervals. Ovarian
ultrasonographic images were assessed daily to confirm ovulation after the treatment. A surge-like release of LH was immediately observed after injection in all animals in the IV (peak time: 4.2 ± 0.6 h, peak concentration: 73.3 ±
27.5 ng/ml) and SC (peak time: 4.6 ± 0.4 h, peak concentration: 62.6 ± 23.2 ng/ml) groups, but not in the control group. Ovulation was detected within 3 days after TAK-683 injection in all animals in the IV and SC groups, and the
interval period from TAK-683 administration to ovulation in the IV group was significantly (P < 0.05) shorter than that of the control group. No significant changes were observed between the IV and SC groups in terms of luteal
diameter and blood progesterone levels after ovulation. The present findings suggest that the involvement of one or more ovarian factor(s) is indispensable for a TAK-683-induced LH surge leading to ovulation in goats.
Collapse
Affiliation(s)
- Nahoko Kanai
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Natsumi Endo
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihiro Wakabayashi
- Laboratory of Neurobiology, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Hisanori Matsui
- Takeda Pharmaceutical Company Limited, Kanagawa 251-0012, Japan
| | | | - Kaori Ishikawa
- Takeda Pharmaceutical Company Limited, Kanagawa 251-0012, Japan
| | - Akira Tanaka
- Takeda Pharmaceutical Company Limited, Kanagawa 251-0012, Japan
| | | | - Hiroaki Okamura
- Laboratory of Neurobiology, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Tomomi Tanaka
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
9
|
d'Anglemont de Tassigny X, Jayasena C, Murphy KG, Dhillo WS, Colledge WH. Mechanistic insights into the more potent effect of KP-54 compared to KP-10 in vivo. PLoS One 2017; 12:e0176821. [PMID: 28464043 PMCID: PMC5413024 DOI: 10.1371/journal.pone.0176821] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
Kisspeptins regulate the mammalian reproductive axis by stimulating release of gonadotrophin releasing hormone (GnRH). Different length kisspeptins (KP) are found of 54, 14, 13 or 10 amino-acids which share a common C-terminal 10-amino acid sequence. KP-54 and KP-10 have been widely used to stimulate the reproductive axis but data suggest that KP-54 and KP-10 are not equally effective at eliciting reproductive hormone secretion after peripheral delivery. To confirm this, we analysed the effect of systemic administration of KP-54 or KP-10 on luteinizing hormone (LH) secretion into the bloodstream of male mice. Plasma LH measurements 10 min or 2 hours after kisspeptin injection showed that KP-54 can sustain LH release far longer than KP-10, suggesting a differential mode of action of the two peptides. To investigate the mechanism for this, we evaluated the pharmacokinetics of the two peptides in vivo and their potential to cross the blood brain barrier (BBB). We found that KP-54 has a half-life of ~32 min in the bloodstream, while KP-10 has a half-life of ~4 min. To compensate for this difference in half-life, we repeated injections of KP-10 every 10 min over 1 hr but failed to reproduce the sustained rise in LH observed after a single KP-54 injection, suggesting that the failure of KP-10 to sustain LH release may not just be related to peptide clearance. We tested the ability of peripherally administered KP-54 and KP-10 to activate c-FOS in GnRH neurons behind the blood brain barrier (BBB) and found that only KP-54 could do this. These data are consistent with KP-54 being able to cross the BBB and suggest that KP10 may be less able to do so.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Channa Jayasena
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London at Hammersmith Campus, Commonwealth Building, London, United Kingdom
| | - Kevin G. Murphy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London at Hammersmith Campus, Commonwealth Building, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London at Hammersmith Campus, Commonwealth Building, London, United Kingdom
| | - William H. Colledge
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Rahayu LP, Behiry ME, Endo N, Tanaka T. Effect of investigational kisspeptin/metastin analog, TAK-683, on luteinizing hormone secretion at different stages of the luteal phase in goats. J Reprod Dev 2017; 63:221-226. [PMID: 28344192 PMCID: PMC5481624 DOI: 10.1262/jrd.2016-183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This study aimed to examine the response of luteinizing hormone (LH) secretion and ovarian steroid profile to TAK-683, an investigational metastin/kisspeptin analog, through treatment during different stages of the luteal phase
in goats. Nine cycling Shiba goats (4.4 ± 2.3 years old) were assigned to early luteal phase (ELP, n = 4), mid-luteal phase (MLP, n = 4), and control (n = 5) groups. The ELP and MLP groups were administered 50 µg of TAK-683
intravenously on either day 5 or between days 7–14 after ovulation, respectively. The control group received vehicle between days 7–14 after ovulation. Blood samples were collected at 10-min (2–6 h), 2-h (6–24 h), and 24-h (24–96
h) intervals after treatment. Significant increases in plasma LH concentration were detected during the periods of 3 to 5 h and 2 to 5 h in the ELP and MLP groups, respectively. Estradiol concentrations continuously increased with
the rise of basal LH secretion after TAK-683 treatment in two goats of the ELP group with a surge-like release of LH, but not in the goats without LH surge, i.e. the MLP and control group ones. Plasma progesterone concentration
and the lengths of estrous cycle in all groups did not change significantly from the time before and after treatment. Present findings indicate that the responses of LH and ovarian steroids to treatment with TAK-683 depend on the
stage of the luteal phase of the estrous cycle. We suggest that the stimulatory effects of TAK-683 on LH secretion are reduced in the process leading to the mid-luteal phase in cycling goats.
Collapse
Affiliation(s)
- Larasati Puji Rahayu
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Mohammed El Behiry
- Visiting Research Scientist from Egypt, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Natsumi Endo
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Tomomi Tanaka
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
11
|
Oishi S, Fujii N. Neuropeptide derivatives to regulate the reproductive axis: Kisspeptin receptor (KISS1R) ligands and neurokinin-3 receptor (NK3R) ligands. Biopolymers 2017; 106:588-97. [PMID: 27271543 DOI: 10.1002/bip.22793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
Recent research has indicated pivotal roles for neuropeptides and their cognate receptors in reproductive physiology. Kisspeptins are RF-amide neuropeptides that stimulate gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus. Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides and positively regulates pulsatile GnRH secretion. These peptides are coexpressed in kisspeptin/NKB/Dyn (KNDy) neurons of the arcuate nucleus, where they contribute to the regulation of puberty onset and other reproductive functions. In this review, the design of peptide ligands for the kisspeptin (KISS1R) and neurokinin-3 (NK3R) receptors are described. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 588-597, 2016.
Collapse
Affiliation(s)
- Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| |
Collapse
|
12
|
Dardente H, Lomet D, Robert V, Decourt C, Beltramo M, Pellicer-Rubio MT. Seasonal breeding in mammals: From basic science to applications and back. Theriogenology 2016; 86:324-32. [DOI: 10.1016/j.theriogenology.2016.04.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 12/29/2022]
|
13
|
A synthetic kisspeptin analog that triggers ovulation and advances puberty. Sci Rep 2016; 6:26908. [PMID: 27245315 PMCID: PMC4887910 DOI: 10.1038/srep26908] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022] Open
Abstract
The neuropeptide kisspeptin and its receptor, KiSS1R, govern the reproductive timeline of mammals by triggering puberty onset and promoting ovulation by stimulating gonadotrophin-releasing hormone (GnRH) secretion. To overcome the drawback of kisspeptin short half-life we designed kisspeptin analogs combining original modifications, triazole peptidomimetic and albumin binding motif, to reduce proteolytic degradation and to slow down renal clearance, respectively. These analogs showed improved in vitro potency and dramatically enhanced pharmacodynamics. When injected intramuscularly into ewes (15 nmol/ewe) primed with a progestogen, the best analog (compound 6, C6) induced synchronized ovulations in both breeding and non-breeding seasons. Ovulations were fertile as demonstrated by the delivery of lambs at term. C6 was also fully active in both female and male mice but was completely inactive in KiSS1R KO mice. Electrophysiological recordings of GnRH neurons from brain slices of GnRH-GFP mice indicated that C6 exerted a direct excitatory action on GnRH neurons. Finally, in prepubertal female mice daily injections (0.3 nmol/mouse) for five days significantly advanced puberty. C6 ability to trigger ovulation and advance puberty demonstrates that kisspeptin analogs may find application in the management of livestock reproduction and opens new possibilities for the treatment of reproductive disorders in humans.
Collapse
|