1
|
Andrei CR, Posastiuc FP, Constantin NT, Mitrea IL. New insights into semen separation techniques in buffaloes. Front Vet Sci 2024; 10:1347482. [PMID: 38269362 PMCID: PMC10806153 DOI: 10.3389/fvets.2023.1347482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Male infertility is frequently caused by idiopathic or unexplained reasons, resulting in an increase in demand for assisted reproductive technologies. In buffaloes, more than in other animals due to reproductive hardiness, successful fertilization needs spermatozoa to effectively transit the female reproductive system to reach the oocyte. This mechanism naturally picks high-quality sperm cells for conception, but when artificial reproductive technologies such as in vitro fertilization, intracytoplasmic sperm injection, or intrauterine insemination are utilized, alternative techniques of sperm selection are necessary. Currently, technology allows for sperm sorting based on motility, maturity, the lack of apoptotic components, proper morphology, and even sex. This study provides current knowledge on all known techniques of sperm cell sorting in buffaloes, evaluates their efficiency, and discusses the benefits and drawbacks of each approach.
Collapse
Affiliation(s)
- Crina Raluca Andrei
- Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Florin Petrișor Posastiuc
- Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nicolae Tiberiu Constantin
- Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
- Research and Development Institute for Bovine Balotești, Balotești, Romania
| | - Ioan Liviu Mitrea
- Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
2
|
Thongkham M, Saenjaiban A, Jantanasakulwong K, Pattanawong W, Arjin C, Hongsibsong S, Rachtanapun P, Sringarm K. New insights from poly-lactic acid and ionomer films coupled with recombinant antibodies for processing sexed-sorting bovine sperm. Int J Biol Macromol 2024; 256:128425. [PMID: 38008136 DOI: 10.1016/j.ijbiomac.2023.128425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
In this study, the efficacy of ionomers and poly-lactic acid (PLA) as an alternative solid material combined with scFv antibodies specific to bovine Y-sperm (Y-scFv) was studied to create a novel method of sexing technology. The coupling efficiency of Y-scFv to the surface of PLA, Na+ and Zn2+ ionomer film was between 2 and 8 mg/mL. Fourier transform infrared spectra confirm that Y-scFv was bound with a carboxylic acid group in each film. Therefore, Na+, Zn2+ ionomers and PLA films conjugated with 4 and 8 mg/mL Y-scFv showed the highest concentration of Y-sperm in the eluted fraction. Considering that the elute fraction was enriched Y-sperm fraction, it contained 67.70-77.94 % of the Y-sperm ratio related to the produced supernatant fraction, which contained up to 69.31-76.01 % enriched X-sperm. In addition, the sperm quality after the sexing process was analyzed by CASA and imaging flow cytometry, which showed that each polymer did not have a negative effect on sperm motility and acrosome integrity for X-sperm. The capacity of ionomer and PLA combined with Y-scFv are used for bovine sperm sexing.
Collapse
Affiliation(s)
- Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aphisit Saenjaiban
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wiwat Pattanawong
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, 50200, Thailand
| | - Surat Hongsibsong
- Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, 50200, Thailand; School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
3
|
Blackburn HD, Azevedo HC, Purdy PH. Incorporation of Biotechnologies into Gene Banking Strategies to Facilitate Rapid Reconstitution of Populations. Animals (Basel) 2023; 13:3169. [PMID: 37893893 PMCID: PMC10603745 DOI: 10.3390/ani13203169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
National animal gene banks that are responsible for conserving livestock, poultry, and aquatic genetic resources need to be capable of utilizing a broad array of cryotechnologies coupled with assisted reproductive technologies to reconstitute either specific animals or populations/breeds as needed. This capability is predicated upon having sufficient genetic diversity (usually encapsulated by number of animals in the collection), units of germplasm or tissues, and the ability to reconstitute animals. While the Food and Agriculture Organization of the United Nations (FAO 2012, 2023) developed a set of guidelines for gene banks on these matters, those guidelines do not consider applications and utilization of newer technologies (e.g., primordial germ cells, cloning from somatic cells, embryo transfer, IVF, sex-sorted semen), which can radically change how gene banks collect, store, and utilize genetic resources. This paper reviews the current status of using newer technologies, explores how gene banks might make such technologies part of their routine operations, and illustrates how combining newer assisted reproductive technologies with older approaches enables populations to be reconstituted more efficiently.
Collapse
Affiliation(s)
- Harvey D. Blackburn
- USDA ARS National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO 80521-4500, USA
| | | | - Phillip H. Purdy
- USDA ARS National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO 80521-4500, USA
| |
Collapse
|
4
|
Pozdyshev DV, Kombarova NA, Muronetz VI. Biochemical Features of X or Y Chromosome-Bearing Spermatozoa for Sperm Sexing. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:655-666. [PMID: 37331711 DOI: 10.1134/s0006297923050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/20/2023]
Abstract
This review presents information on biochemical features of spermatozoa bearing X or Y chromosome, enabling production of a sperm fraction with pre-defined sex chromosome. The almost only technology currently used for such separation (called sexing) is based on the fluorescence-activated cell sorting of sperm depending on DNA content. In addition to the applied aspects, this technology made it possible to analyze properties of the isolated populations of spermatozoa bearing X or Y chromosome. In recent years, existence of the differences between these populations at the transcriptome and proteome level have been reported in a number of studies. It is noteworthy that these differences are primarily related to the energy metabolism and flagellar structural proteins. New methods of sperm enrichment with X or Y chromosome cells are based on the differences in motility between the spermatozoa with different sex chromosomes. Sperm sexing is a part of the widespread protocol of artificial insemination of cows with cryopreserved semen, it allows to increase proportion of the offspring with the required sex. In addition, advances in the separation of X and Y spermatozoa may allow this approach to be applied in clinical practice to avoid sex-linked diseases.
Collapse
Affiliation(s)
- Denis V Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Nina A Kombarova
- Head Center for Reproduction of Agricultural Animals, 142143 Bykovo, Moscow Region, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
He Q, Wu S, Gao F, Xu X, Wang S, Xu Z, Huang M, Zhang K, Zhang Y, Quan F. Diluent pH affects sperm motility via GSK3 α/β-hexokinase pathway for the efficient enrichment of X-sperm to increase the female kids rate of dairy goats. Theriogenology 2023; 201:1-11. [PMID: 36801817 DOI: 10.1016/j.theriogenology.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/20/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Dairy goats are the goats bred with the ability to produce large quantities of milk, and the increase of the female kid rate of breeding dairy goats is beneficial for milk production and economic benefits of dairy goat farms. Our previous study revealed that regulating the pH of dairy goat semen diluent to 6.2 or 7.4 respectively, the proportion of X chromosome bearing sperm (X-sperm) in the up and down layers of the tube after incubation was significantly higher than that of Y chromosome bearing sperm (Y-sperm) i.e. enriched X-sperm. In this study, fresh dairy goat semen collected in different seasons was diluted in different pH solutions to calculate the number and rate of X-sperm and to measure the functional parameters of enriched sperm. The artificial insemination experiments were performed with enriched X-sperm. The mechanisms of regulating the pH of diluent affecting sperm enrichment were further studied. The results showed that the proportion of enriched X-sperm in pH 6.2 and 7.4 diluents of sperm collected in different seasons showed no significantly different, but were significantly higher than that of the control group (pH 6.8). The in vitro functional parameters of X-sperm enriched in pH 6.2 and 7.4 diluent solution were not significantly different from those of the control group (P > 0.05). After artificial insemination with X-sperm enriched in pH7.4 diluent, the proportion of female offspring was significantly higher than that of the control group. It was found that the regulating pH of the diluent affected sperm mitochondrial activity and glucose uptake capacity via phosphorylating NF-κB and GSK3α/β proteins. The motility activity of X-sperm was enhanced under acidic conditions and weakened under alkaline conditions, which was conducive to the effective enrichment of X-sperm. This study demonstrated that the number and proportion of X-sperm enriched using pH 7.4 diluent were elevated, and the proportion of female kids was increased. This technology can be used for the reproduction and production of dairy goats in farms at large scales.
Collapse
Affiliation(s)
- Qifu He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xuerui Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Shaowen Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Min Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China.
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
High-Efficiency Bovine Sperm Sexing Used Magnetic-Activated Cell Sorting by Coupling scFv Antibodies Specific to Y-Chromosome-Bearing Sperm on Magnetic Microbeads. BIOLOGY 2022; 11:biology11050715. [PMID: 35625442 PMCID: PMC9138659 DOI: 10.3390/biology11050715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Sperm sexing technique is favored in the dairy industry. This research focuses on the efficiency of bovine sperm sexing using magnetic-activated cell sorting (MACS) by scFv antibody against Y-chromosome-bearing sperm (Y-scFv) coupled to magnetic microbeads and its effects on kinematic variables, sperm quality, and X/Y-sperm ratio. In this study, the optimal concentration of Y-scFv antibody coupling to the surface of magnetic microbeads was 2–4 mg/mL. PY-microbeads revealed significantly enriched Y-chromosome-bearing sperm (Y-sperm) in the eluted fraction (78.01–81.43%) and X-chromosome-bearing sperm (X-sperm) in the supernatant fraction (79.04–82.65%). The quality of frozen–thawed sexed sperm was analyzed by CASA and imaging flow cytometer, which showed that PY-microbeads did not have a negative effect on X-sperm motility, viability, or acrosome integrity. However, sexed Y-sperm had significantly decreased motility and viability. The X/Y-sperm ratio was determined using an imaging flow cytometer and real-time PCR. PY-microbeads produced sperm with up to 82.65% X-sperm in the X-enriched fraction and up to 81.43% Y-sperm in the Y-enriched fraction. Bovine sperm sexing by PY-microbeads showed high efficiency in separating Y-sperm from X-sperm and acceptable sperm quality. This initial technique is feasible for bovine sperm sexing, which increases the number of heifers in dairy herds while lowering production expenses.
Collapse
|
7
|
Husna AU, Azam A, Qadeer S, Ejaz R, Akhter S. Pregnancy and Calving Rates Improved By Using Modified Swim Up Method For Buffalo Semen Sexing. Reprod Domest Anim 2022; 57:798-801. [PMID: 35298045 DOI: 10.1111/rda.14112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
Present study aimed to evaluate field fertility rate and calf sex ratio of Nili Ravi buffalo semen sexed through modified swim-up method (Husna et al., 2017). For this purpose, five mature Nili-Ravi buffalo bulls kept at semen production unit, Qadirabad, Pakistan, were selected. Two consecutive ejaculates per week were collected with artificial vaginą for three weeks. Qualified semen ejaculates were pooled and divided into two aliquots. The first aliquot was processed by routine procedure (control), while the second was processed by modified swim-up technique. After separation, semen was diluted in tris-citric acid extender and cryopreserved using standard techniques. Sexed semen was evaluated for fertility trials during peak breeding season. Artificially inseminated animals were examined for pregnancy rate through rectal palpation at least 3 months after insemination under field conditions. Calving ratio of female and male calves were recoded after Parturition. The fertility rate was higher (P<0.05) in X sorted sperm (70%) as compared to control (47%). The female calf ratio was higher (P<0.05) in X sorted sperm (78.58%) compared to control (53.3%). In Conclusion, conception rate and production of female calf was significantly higher with sexed semen separated through modified swim-up method compared to unsexed control.
Collapse
Affiliation(s)
- Asma U Husna
- Department of Biology (Zoology), University of Haripur, 22620, KPK, Pakistan
| | - Asima Azam
- Department of Zoology, Shaheed Benazir Bhutto Women University Peshawar-25000, Pakistan
| | - Saima Qadeer
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Rabea Ejaz
- Department of Zoology, Shaheed Benazir Bhutto Women University Peshawar-25000, Pakistan
| | - Shamim Akhter
- Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan
| |
Collapse
|
8
|
Antibody-Conjugated Magnetic Beads for Sperm Sexing Using a Multi-Wall Carbon Nanotube Microfluidic Device. MICROMACHINES 2022; 13:mi13030426. [PMID: 35334718 PMCID: PMC8955769 DOI: 10.3390/mi13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
This study proposes a microfluidic device used for X-/Y-sperm separation based on monoclonal antibody-conjugated magnetic beads, which become positively charged in the flow system. Y-sperms were selectively captured via a monoclonal antibody and transferred onto the microfluidic device and were discarded, so that X-sperms can be isolated and commercially exploited for fertilization demands of female cattle in dairy industry. Therefore, the research team used monoclonal antibody-conjugated magnetic beads to increase the force that causes the Y-sperm to be pulled out of the system, leaving only the X-sperm for further use. The experimental design was divided into the following: Model 1, the microfluid system for sorting positive magnetic beads, which yielded 100% separation; Model 2, the sorting of monoclonal antibody-conjugated magnetic beads in the fluid system, yielding 98.84% microcirculation; Model 3, the sorting of monoclonal antibody-conjugated magnetic beads with sperm in the microfluid system, yielding 80.12% microcirculation. Moreover, the fabrication microfluidic system had thin film electrodes created via UV lithography and MWCNTs electrode structure capable of erecting an electrode wall 1500 µm above the floor with a flow channel width of only 100 µm. The system was tested using a constant flow rate of 2 µL/min and X-/Y-sperm were separated using carbon nanotube electrodes at 2.5 V. The structure created with the use of vertical electrodes and monoclonal antibody-conjugated magnetic beads technique produced a higher effective rejection effect and was able to remove a large number of unwanted sperm from the system with 80.12% efficiency.
Collapse
|
9
|
Advancements in mammalian X and Y sperm differences and sex control technology. ZYGOTE 2022; 30:423-430. [DOI: 10.1017/s0967199421000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Summary
Mammal sex determination depends on whether the X sperm or Y sperm binds to the oocyte during fertilization. If the X sperm joins in oocyte, the offspring will be female, if the Y sperm fertilizes, the offspring will be male. Livestock sex control technology has tremendous value for livestock breeding as it can increase the proportion of female offspring and improve the efficiency of livestock production. This review discusses the detailed differences between mammalian X and Y sperm with respect to their morphology, size, and motility in the reproductive tract and in in vitro conditions, as well as ’omics analysis results. Moreover, research progress in mammalian sex control technology has been summarized.
Collapse
|
10
|
Meles DK, Mustofa I, Hariadi M, Wurlina W, Susilowati S, Amaliya A, Suparto S, Rimayanti R. The enriched Y-bearing sperm combined with delayed fixed-time artificial insemination for obtaining male Simmental crossbred offspring. Vet World 2022; 15:102-109. [PMID: 35369602 PMCID: PMC8924384 DOI: 10.14202/vetworld.2022.102-109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/23/2021] [Indexed: 01/03/2023] Open
Abstract
Background and Aim: The production of male calf beef cattle is an agricultural innovation needed to increase the farm’s productivity as a provider of meat sources. This study aimed to determine the sex ratio of the offspring of cows inseminated with Y-bearing sperm enriched by Percoll density gradient centrifugation and swim-up, combined with delayed fixed-time artificial insemination (FTAI). Materials and Methods: Ejaculates of Simmental bulls were divided into four equal portions and grouped as T0 (control, non-sexed semen), T1 and T2 were sexed semen using Percoll density gradient centrifugation three and five levels, respectively, and T3 was sexed semen using swim-up. After the sex was sorted, the semen was diluted in a tris-egg yolk extender, packaged in French mini-straws containing 50 million live sperm cells, and frozen. Pre-sexed, post-sexed, and post-thawed spermatozoa were evaluated based on progressive motility, viability, intact plasma membrane, and abnormality. The post-thawed semen of T0 was artificially inseminated to recipient cows at 12 h after onset of estrus (not delayed FTAI). Meanwhile, the delayed FTAI was conducted 18-20 h after onset of estrus using the T0, the best of T1 and T2, and the T3 post-thawed semen. Results: The Percoll density gradient centrifugation reduced motility, viability, and intact plasma membrane but increased sperm abnormalities. Meanwhile, the swim-up process increased motility, viability, and intact plasma membrane of sperm cells but decreased sperm abnormalities. Post-thawed semen decreased motility, viability, and intact plasma membrane of sperm cells but increased sperm abnormalities. The sex ratio of the Simmental crossbred offspring was 96.08% and 100% in T1 and T3, respectively, compared to 48.25% and 67.39% in T0 not delayed and delayed FTAI, respectively. Conclusion: The Percoll density gradient centrifugation and swim-up methods are prospective for obtaining male offspring.
Collapse
Affiliation(s)
- Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Mas'ud Hariadi
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Suherni Susilowati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Anny Amaliya
- The Singosari National Artificial Insemination Center, Ngujung, Toyomarto, Singosari, Malang District 65153, East Java, Indonesia
| | - Suparto Suparto
- Gunungrejo Makmur Livestock Cooperative, Kedung Pring, Lamongan District 62272, East Jawa, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| |
Collapse
|
11
|
He Q, Wu S, Huang M, Wang Y, Zhang K, Kang J, Zhang Y, Quan F. Effects of Diluent pH on Enrichment and Performance of Dairy Goat X/Y Sperm. Front Cell Dev Biol 2021; 9:747722. [PMID: 34660605 PMCID: PMC8517142 DOI: 10.3389/fcell.2021.747722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
In this paper, on the basis of the differences in the hydrogen ion concentration (pH) of the diluent dairy goat semen on X/Y sperm motility, an X/Y sperm enrichment study was conducted to establish a simple and effective method for gender control in dairy goats. Dairy goat semen was diluted using different pH dilutions and was incubated. Then, the X/Y sperm ratio in the isolated upper sperm was determined using the double TaqMan qPCR method. The internal pH change pattern of sperm cells at different pH dilutions was measured using BCECF-AM probe, and the functional parameters of the isolated sperm were tested with the corresponding kit. Next, an in vitro fertilization test was conducted using isolated spermatozoa and oocytes to determine their fertilization rates, the percentages of female embryos, and the expression of genes related to developing potentially fertilized embryos. Results showed that the percentages of the X sperm cells in the upper sperm layer were 67.24% ± 2.61% at sperm dilution pH of 6.2 and 30.45% ± 1.03% at sperm dilution pH of 7.4, which was significantly different from 52.35% ± 1.72% of the control group (pH 6.8) (P < 0.01). Results also showed that there is a relationship between the external pHo and internal pHi of sperm cells. Furthermore, the percentages of female embryos after the in vitro fertilization of the isolated upper sperm with mature oocytes at pH 6.2 and 7.4 were 66.67% ± 0.05 and 29.73% ± 0.04%, respectively, compared with 48.57% ± 0.02% in the control group (pH 6.8). Highly significant differences occurred between groups (P < 0.01). Additionally, no significant difference was observed during the expression of genes related to embryonic development between the blastocysts formed from sperm isolated by changing the pH of the diluent and the control sperm (P > 0.05). Therefore, this study successfully established a simple and effective method for enriched X/Y sperms from dairy goats, which is important for regulating the desired sex progeny during dairy goat breeding and for guiding dairy goat production.
Collapse
Affiliation(s)
- Qifu He
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Ming Huang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Ying Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
Awan MA, Arshad J, Rakha BA, Ansari MS, Waseem M, Fouladi-Nashta A, Miller D, Akhter S. Sperm binding to hyaluronan is an excellent predictor of Nili-Ravi buffalo bull fertility. Andrologia 2021; 53:e13991. [PMID: 33528065 DOI: 10.1111/and.13991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
This study reports the first evaluation of sperm hyaluronan binding assay (HBA) for predicting the fertility of Nili-Ravi buffalo bulls in relation to standard parameters of sperm quality. Cryopreserved semen doses of low (n = 6), medium (n = 3) and high fertility (n = 8) bulls based on their respective return rates were used. Significantly, more spermatozoa bound to hyaluronan from the most fertile bulls (57.15% ± 1.44) compared with medium (42.46% ± 1.08) and low fertility bulls (29.70% ± 0.78). A strongly positive correlation (r = .824, p < .01) was found between HBA and fertility that predicts a 67.9% variability (r2 = .679, p < .01) in fertility. HBA was also strongly positively correlated with sperm viability (r = .679, p < .01) followed by their live/dead ratio (r = .637, p < .01), uncapacitated spermatozoa (r = .631, p < .01), normal apical ridge (r = .459, p < .01), motility (r = .434, p < .01), mature spermatozoa with low residual histones (r = .364, p < .01), high plasma membrane integrity (r = .316, p < .01) and nonfragmented DNA levels (r = .236, p < .05). It was negatively correlated with spermatozoa having reacted acrosome (r = -.654, p < .01). A fertility model built using a combination of sperm HBA and either sperm livability or viability predicts, respectively, 86.1% (r2 = .861, p < .01) and 85.9% (r2 = .859, p < .01) variability in buffalo bull fertility. In conclusion, sperm HBA may prove to be a single robust predictor of Nili-Ravi buffalo bull fertility.
Collapse
Affiliation(s)
- Muhammad Amjad Awan
- Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Javeria Arshad
- Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Bushra Allah Rakha
- Department of Wildlife Management, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | | | | | - Ali Fouladi-Nashta
- Reproduction Research Group, Royal Veterinary College, Hatfield, United Kingdom
| | - David Miller
- LIGHT Laboratories, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Shamim Akhter
- Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
13
|
Keles E, Malama E, Bozukova S, Siuda M, Wyck S, Witschi U, Bauersachs S, Bollwein H. The micro-RNA content of unsorted cryopreserved bovine sperm and its relation to the fertility of sperm after sex-sorting. BMC Genomics 2021; 22:30. [PMID: 33413071 PMCID: PMC7792310 DOI: 10.1186/s12864-020-07280-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of sex-sorted sperm in cattle assisted reproduction is constantly increasing. However, sperm fertility can substantially differ between unsorted (conventional) and sex-sorted semen batches of the same sire. Sperm microRNAs (miRNA) have been suggested as promising biomarkers of bull fertility the last years. In this study, we hypothesized that the miRNA profile of cryopreserved conventional sperm is related to bull fertility after artificial insemination with X-bearing sperm. For this purpose, we analyzed the miRNA profile of 18 conventional sperm samples obtained from nine high- (HF) and nine low-fertility (LF) bulls that were contemporaneously used to produce conventional and sex-sorted semen batches. The annual 56-day non-return rate for each semen type (NRRconv and NRRss, respectively) was recorded for each bull. RESULTS In total, 85 miRNAs were detected. MiR-34b-3p and miR-100-5p were the two most highly expressed miRNAs with their relative abundance reaching 30% in total. MiR-10a-5p and miR-9-5p were differentially expressed in LF and HF samples (false discovery rate < 10%). The expression levels of miR-9-5p, miR-34c, miR-423-5p, miR-449a, miR-5193-5p, miR-1246, miR-2483-5p, miR-92a, miR-21-5p were significantly correlated to NRRss but not to NRRconv. Based on robust regression analysis, miR-34c, miR-7859 and miR-342 showed the highest contribution to the prediction of NRRss. CONCLUSIONS A set of miRNAs detected in conventionally produced semen batches were linked to the fertilizing potential of bovine sperm after sex-sorting. These miRNAs should be further evaluated as potential biomarkers of a sire's suitability for the production of sex-sorted sperm.
Collapse
Affiliation(s)
- Esin Keles
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Eleni Malama
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland.
- Veterinary Research Institute, Hellenic Agricultural Organization Demeter, 57001, Thermi, Thessaloniki, Greece.
| | - Siyka Bozukova
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Mathias Siuda
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Sarah Wyck
- Swissgenetics, CH-3052, Zollikofen, Switzerland
| | | | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| |
Collapse
|
14
|
Akhter S, Awan MA, Arshad J, Rakha BA, Ansari MS, Iqbal S. Effect of Synergism Between Carboxylated Poly-l-Lysine and Glycerol on Freezability of Nili-Ravi Buffalo (Bubalus bubalis) Semen. Biopreserv Biobank 2020; 18:367-375. [DOI: 10.1089/bio.2019.0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shamim Akhter
- Department of Zoology and Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Amjad Awan
- Department of Zoology and Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi, Pakistan
| | - Javeria Arshad
- Department of Zoology and Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi, Pakistan
| | - Bushra Allah Rakha
- Department of Wildlife Management, Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi, Pakistan
| | | | - Sajid Iqbal
- Semen Production Unit Qadirabad, Sahiwal, Pakistan
| |
Collapse
|
15
|
Diers S, Heise J, Krebs T, Groenewold J, Tetens J. Effect of sexed semen on different production and functional traits in German Holsteins. Vet Anim Sci 2020; 9:100101. [PMID: 32734111 PMCID: PMC7386698 DOI: 10.1016/j.vas.2020.100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022] Open
Abstract
Calf sex had an influence on calving ease and dystocia rates. Sexed semen within same calf sex had only minor effects on most traits. Stillbirth rate for the few male calves from semen sexed for females was 30.6%.
The aim of this study was to analyze possible effects of semen type (conventional vs. female sexed) and calf sex on fertility and production traits. For this purpose, field data of German Holstein heifers in Lower Saxony were evaluated. Sexed semen was mainly used for first insemination. 87.0% female calves were born from sexed semen, while 52.7% female calves were born from conventional semen. Heifers inseminated with sexed semen were on average 43 to 48 days younger at their first calving than heifers inseminated with conventional semen. Calf sex had an influence on the average calving ease and the dystocia rates. Male calves showed higher calving ease scores and caused a higher risk for dystocia than female calves. The semen type had no influence on these characteristics. Within the same calf sex, sexed semen had only minor effects on most traits, except for stillbirth rates: the stillbirth rate for male calves from female sexed semen was 30.6%, which was 2.86 times the stillbirth rate of male calves from conventional semen, possibly due to trisomies. Sexed semen played only a minor role for production traits in first lactations. The extrapolated 305-day milk yield was 200 kg lower for first calf heifers, which were inseminated with sexed semen compared to heifers inseminated with conventional semen. Fat and protein yield were 6 kg to 8 kg lower after use of sexed semen. Animals with female offspring from sexed semen showed higher survival rates than the other groups.
Collapse
Affiliation(s)
- S Diers
- Department of Animal Science, Georg-August-University, Burckhardtweg 2, Göttingen 37077, Germany
| | - J Heise
- IT Solutions for Animal Production (vit), Heinrich-Schröder-Weg 1, Verden 27283, Germany
| | - T Krebs
- Department of Animal Science, Georg-August-University, Burckhardtweg 2, Göttingen 37077, Germany
| | - J Groenewold
- Chamber of Agriculture Lower Saxony, Mars-la-Tour-Straße 6, Oldenburg 26121, Germany
| | - J Tetens
- Department of Animal Science, Georg-August-University, Burckhardtweg 2, Göttingen 37077, Germany
| |
Collapse
|
16
|
Katigbak RD, Turchini GM, de Graaf SP, Kong L, Dumée LF. Review on Sperm Sorting Technologies and Sperm Properties toward New Separation Methods via the Interface of Biochemistry and Material Science. ACTA ACUST UNITED AC 2019; 3:e1900079. [PMID: 32648656 DOI: 10.1002/adbi.201900079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/31/2019] [Indexed: 01/14/2023]
Abstract
Successful fertilization in mammals requires spermatozoa to efficiently traverse the female reproductive tract to meet the egg. This process naturally selects high quality sperm cells for fertilization, but when artificial reproductive technologies are used such as in vitro fertilization, intracytoplasmic sperm injection, or intrauterine insemination, other methods of sperm selection are required. Currently, technology enables sperm sorting based on motility, maturity as defined by zeta potential or hyaluronic acid binding site expression, absence of apoptotic factors, appropriate morphology, and even sex. This review summarizes current knowledge on all known methods of sperm cell sorting, compares their efficiency, and discusses the advantages and limitations of each technique. Scope for further refinement and improvement of current methods are discussed as is the potential to utilize a variety of materials to innovate new methods of sperm separation.
Collapse
Affiliation(s)
- Roberto D Katigbak
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, Victoria, Australia
| | - Giovanni M Turchini
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Burwood, 3125, Victoria, Australia
| | - Simon P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, 2006, New South Wales, Australia
| | - Lingxue Kong
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, Victoria, Australia
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, Victoria, Australia
| |
Collapse
|
17
|
Naniwa Y, Sakamoto Y, Toda S, Uchiyama K. Bovine sperm sex-selection technology in Japan. Reprod Med Biol 2019; 18:17-26. [PMID: 30655718 PMCID: PMC6332832 DOI: 10.1002/rmb2.12235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In Japan, Livestock Improvement Association of Japan started commercially producing sexed bovine semen 10 years ago, and sexed bovine semen is currently used for the artificial insemination (AI) in the farms. In this review, the authors introduce the technology for sperm sexing by flow cytometry, the efforts at commercializing sexed semen in Japan, and recent field data on artificial insemination of the cattle with sexed semen. METHODS In the procedures of the flow cytometric method, X-chromosome-bearing sperm and Y-chromosome-bearing sperm were fluorescently stained, separated from each other by analyzing the difference in the DNA content, and cryopreserved. The authors surveyed the conception rates after AI with these sperm and sex ratios of the offspring with the cooperation from livestock associations, AI technicians, and farmers. MAIN FINDINGS RESULTS Although AI with sexed semen was associated with lower conception rates in comparison with AI with conventional semen, the accuracy of sex selection using AI with sexed semen was beyond >90%. CONCLUSION Sexed semen produced by flow cytometry has the potential to produce offspring of the preferred sex with high accuracy and reliability. Thus, it is expected that sexed semen is used for AI more frequently in the farms.
Collapse
Affiliation(s)
- Yousuke Naniwa
- Maebashi Institute of Animal ScienceLivestock Improvement Association of Japan, Inc.MaebashiJapan
| | - Yoshiya Sakamoto
- Maebashi Institute of Animal ScienceLivestock Improvement Association of Japan, Inc.MaebashiJapan
| | - Syohei Toda
- Maebashi Institute of Animal ScienceLivestock Improvement Association of Japan, Inc.MaebashiJapan
| | - Kyoko Uchiyama
- Maebashi Institute of Animal ScienceLivestock Improvement Association of Japan, Inc.MaebashiJapan
| |
Collapse
|
18
|
|