1
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in small tail han sheep with FecB BB genotype. Anim Biotechnol 2024; 35:2312393. [PMID: 38421365 DOI: 10.1080/10495398.2024.2312393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND The thyroid gland is an important endocrine gland in animals that secretes thyroid hormones and acts on various organs throughout the body. lncRNAs are long non-coding RNAs that play an important role in animal reproduction; however, there is a lack of understanding of their expression patterns and potential roles in the thyroid gland of the Small Tail Han (STH) sheep. In this study, we used RNA-Seq technology to examine the transcriptome expression pattern of the thyroid from the luteal phase (LP) and follicular phase (FP) of FecB BB (MM) STH sheep. RESULTS We identified a total of 122 and 1287 differential expression lncRNAs (DELs) and differential expression mRNAs (DEGs), respectively, which were significantly differentially expressed. These DELs target genes and DEGs can be enriched in several signalling pathways related to the animal reproduction process. CONCLUSIONS The expression profiles of DELs and DEGs in thyroid glands provide a more comprehensive resource for elucidating the reproductive regulatory mechanisms of STH sheep.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
2
|
Xu H, Akhmet N, Luo Y, Guo Z, Pan C, Song E, Malmakov N, Akhatayeva Z, Lan X. Are two beneficial mutations (p.Q249R and 90-bp Indel) within the ovine BMPRIB gene associated with growth traits? Front Vet Sci 2024; 10:1280548. [PMID: 38644960 PMCID: PMC11027740 DOI: 10.3389/fvets.2023.1280548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 04/23/2024] Open
Abstract
Background The problem of achieving economic efficiency in sheep breeding can be largely solved by increasing sheep productivity. Recently, the BMPRIB gene has been revealed by GWAS as a potential candidate gene for sheep body morphometric traits. Therefore, the present study aimed to investigate whether genetic polymorphisms (p.Q249R SNP and 90-bp deletion) in the BMPRIB gene are associated with sheep growth traits. Methods PCR-based genotyping was performed on 1,875 sheep, including 1,191 Guiqian semi-fine wool (GQSFW), 560 Luxi Blackhead (LXBH), 55 Lanzhou fat-tailed (LZFT), and 69 Weining (WN) sheep. Genotype-phenotype association was assessed using the independent samples t-test and ANOVA. The significance level was set at αoriginal < 0.05. The threshold p-value for significance was adjusted after correction for multiple comparisons using the Bonferroni correction. Results After the Bonferroni correction, it was found that individuals with FecB+/FecB+ genotypes of the p.Q249R had significantly better growth traits in LXBH ewe lambs, including the body length, chest width, paunch girth, cannon circumference, and hip width (P<0.0005). Meanwhile, associations were observed between 90-bp deletion polymorphism and several growth traits (body length, body height, chest depth, and canon circumference) in GQSFW ewe adults after the Bonferroni correction (P < 0.0002), and individuals with the "DD" genotypes had greater growth traits. Conclusion Our findings align with the experimental observations from GWAS, which identified the BMPRIB gene as a potential candidate gene for body measurement traits. These findings not only confirm the previous study's results but also expand on them. Therefore, further investigations regarding the impact of BMPRIB polymorphisms on growth traits are necessary in other sheep breeds.
Collapse
Affiliation(s)
- Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Nazar Akhmet
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenggang Guo
- Bijie Animal Husbandry and Veterinary Science Research Institute, Bijie, Guizhou, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Enliang Song
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Nurlan Malmakov
- Scientific Research Institute of Sheep Breeding Branch, Kazakh Scientific Research Institute of Animal Husbandry and Fodder Production, Mynbaev, Almaty Region, Kazakhstan
| | - Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Research Institute of Sheep Breeding Branch, Kazakh Scientific Research Institute of Animal Husbandry and Fodder Production, Mynbaev, Almaty Region, Kazakhstan
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Transcriptome Analysis Reveals Differentially Expressed circRNAs Associated with Fecundity in Small-Tail Han Sheep Thyroid with Different FecB Genotypes. Animals (Basel) 2023; 14:105. [PMID: 38200837 PMCID: PMC10777913 DOI: 10.3390/ani14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Litter size is an economically important trait in sheep, and it is a complex trait controlled by multiple genes in multiple organs. Among them, the regulation of lamb number trait by the thyroid gland is a very important part. However, the molecular mechanisms of the thyroid gland in sheep reproduction remain unclear. Here, RNA-seq was used to detect transcriptome expression patterns in the thyroid gland between follicular phase (FP) and luteal phase (LP) in FecB BB (MM) and FecB ++ (ww) STH sheep, respectively, and to identify differentially expressed circRNAs (DECs) associated with reproduction. Bioinformatic analysis of the source genes of these DECs revealed that they can be enriched in multiple signaling pathways involved in the reproductive process of animals. We found that the source genes of these DECs, such as GNAQ, VEGFC, MAPK1, STAT1, and HSD17B7, may play important roles in the reproductive process of animals. To better understand the function of these DECs, we constructed circRNA-miRNA co-expression networks. Dual luciferase reporter assays suggested that a ceRNA regulatory mechanism between circ_0003259-oar-miR-133-TXLNA and circ_0012128-oar-miR-370-3p-FGFR1 may hold. All of these DEC expression profiles in the thyroid gland provide a novel resource for elucidating the regulatory mechanisms underlying STH sheep prolificacy.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| |
Collapse
|
4
|
Liu LL, Meng J, Ma HY, Cao H, Liu WJ. Candidate genes for litter size in Xinjiang sheep identified by Specific Locus Amplified Fragment (SLAF) sequencing. Anim Biotechnol 2023; 34:3053-3062. [PMID: 36244020 DOI: 10.1080/10495398.2022.2131561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to investigate the selection signatures at a genome-wide level in 'Pishan' sheep using Specific Locus Amplified Fragment (SLAF)-seq. Blood samples from 126 ewes were sequenced using SLAF tags, and the ovarian tissues from 8 ewes (Bashbay sheep, a single litter size group (SG group); 'Pishan' sheep, double litter size group (DG group)) were collected to detect expression levels by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Selection signature analysis was performed using global fixation index (Fst) and nucleotide diversity (π) ratio. A total of 1,192,168 high-quality SLAFs were identified. Notably, 2380 candidate regions under selection using two approaches were identified. A total of 2069 genes were identified, which were involved in dopaminergic synapses, thyroid hormone synthesis, ovarian steroidogenesis and thyroid hormone signalling pathways. Furthermore, Growth Differentiation Factor 9 (GDF9), Period Circadian Regulator 2 (PER2), Thyroid Stimulating Hormone Receptor (TSHR), and Nuclear Receptor Coactivator 1 (NCOA1) reside within these regions and pathways. The expression levels of GDF9 and PER2 genes in sheep tissue of the DG group were significantly higher than those in the SG group. These genes are interesting candidates for litter size and provide a starting point for further identification of conservation strategies for 'Pishan' sheep.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jun Meng
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hai-Yu Ma
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hang Cao
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wu-Jun Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
5
|
Li D, Zhang L, Wang Y, Chen X, Li F, Yang L, Cui J, Li R, Cao B, An X, Song Y. FecB mutation and litter size are associated with a 90-base pair deletion in BMPR1B in East Friesian and Hu crossbred sheep. Anim Biotechnol 2023; 34:1314-1323. [PMID: 34985398 DOI: 10.1080/10495398.2021.2020805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Litter size is a critical economic trait in livestock, but only a few studies have focused on associated indel mutations in BMPR1B, a key regulator of ovulation and litter size in sheep. We evaluated the effects of BMPR1B mutations on the reproductive performance of sheep. We used Hu, East Friesian, and East Friesian/Hu crossbred sheep as experimental subjects and identified a novel 90 bp deletion in BMPR1B, which coincides with the c.746A > G (FecB mutation) genotype. The correlation between the two loci and litter size was then evaluated. We identified three genotypes for the Del-90bp locus, namely, II, ID, and DD, and three genotypes for the c.746A > G locus, namely ++, B+, and BB. Both Del-90bp and c.746A > G significantly affected the litter size of Hu and East Friesian/Hu crossbred sheep. Linkage disequilibrium analysis revealed a strong linkage disequilibrium between these loci in Hu sheep and the F1 population (r2 > 0.33), which suggests that detecting this 90 bp deletion might be a simple method to identify the likely carriers of c.746A > G. However, the function of this 90-bp deletion still needs further exploration. We provide genetic data that can be used as a reference for the breeding of improved prolific traits in sheep.
Collapse
Affiliation(s)
- Danni Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuchen Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xingzhuo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lichun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Wu H, Ma W, Yan L, Liu F, Xu S, Ji P, Gao S, Zhang L, Liu G. Investigation of SNP markers for the melatonin production trait in the Hu sheep with bulked segregant analysis. BMC Genomics 2023; 24:502. [PMID: 37648999 PMCID: PMC10466869 DOI: 10.1186/s12864-023-09494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/29/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND As an important reproductive hormone, melatonin plays an important role in regulating the reproductive activities of sheep and other mammals. Hu sheep is a breed favoring for meat, with prolific traits. In order to explore the relationship between melatonin and reproductive function of Hu sheep, 7,694,759 SNPs were screened out through the whole genome sequencing analysis from high and low melatonin production Hu sheep. RESULTS A total of 68,673 SNPs, involving in 1126 genes, were identified by ED association analysis. Correlation analysis of SNPs of AANAT/ASMT gene and MTNR1A/MTNR1B gene were carried out. The melatonin level of CG genotype 7,981,372 of AANAT, GA genotype 7,981,866 of ASMT and GG genotype 17,355,171 of MTNR1A were higher than the average melatonin level of 1.64 ng/mL. High melatonin Hu sheep appear to have better multiple reproductive performance. CONCLUSIONS By using different methods, three SNPs which are associated with high melatonin production trait have been identified in Hu sheep. These 3 SNPs are located in melatonin synthetase AANAT/ASMT and receptor MTNR1A, respectively. Considering the positive association between melatonin production and reproductive performance in ruminants, these three SNPs can be served as the potential molecular markers for breading Hu sheep with the desirable reproductive traits.
Collapse
Affiliation(s)
- Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No 2, Yuanmingyuan West Road, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Wenkui Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No 2, Yuanmingyuan West Road, Beijing, 100193, China
| | - Laiqing Yan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No 2, Yuanmingyuan West Road, Beijing, 100193, China
| | - Fenze Liu
- Inner Mongolia Golden Grassland Ecological Technology Group Co., LTD., Bayannaoer, 015000, China
| | - Shang Xu
- Inner Mongolia Golden Grassland Ecological Technology Group Co., LTD., Bayannaoer, 015000, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No 2, Yuanmingyuan West Road, Beijing, 100193, China
| | - Shuai Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No 2, Yuanmingyuan West Road, Beijing, 100193, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No 2, Yuanmingyuan West Road, Beijing, 100193, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No 2, Yuanmingyuan West Road, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
7
|
Ajafar MH, Kadhim AH, Al-Thuwaini TM, Al-Shuhaib MBS, Hussein TH. Dr Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: a review study. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v45i1.57927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
. Litter size is one of the crucial factors in livestock production and is of high economic value, which is affected by ovulation rate, hormones, and growth factors. Growth factors play a multifaceted role in reproductive physiology. This review aims to investigate the association of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) with litter size in livestock. The transforming growth factor β (TGF- β) superfamily includes more than 34 members; GDF9 and BMP15 are among the most significant factors for regulating fertility and litter size in most livestock species. Ovarian follicles release BMP15 and GDF9 that are involved in the maturation of primary follicles into the basal form, proliferation of granulosa and theca cells, steroidogenesis, ovulation, and formation of the corpus luteum. Besides, these factors are highly expressed in oocytes and are necessary for female fertility and multiple ovulation in several livestock species. Animals with two inactive copies of these factors are sterile, while those with one inactive copy are fertile. Thus, the present review provides valuable information on the association of BMP15 and GDF9 with litter size in livestock that can be used as biological markers of multiple ovulation or for improving fertility in livestock.
Collapse
|
8
|
Dehghanian Reyhan V, Sadeghi M, Miraei-Ashtiani SR, Ghafouri F, Kastelic JP, Barkema HW. Integrated transcriptome and regulatory network analyses identify candidate genes and pathways modulating ewe fertility. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Guo L, Li C, Liu G, Luo J, Xu W, Guo Y. Identifying FecB genotypes in the muscle from sheep breeds indigenous to Xilingol, and establishment of a TaqMan real-time PCR technique to distinguish FecB alleles. Food Sci Nutr 2022; 10:2470-2475. [PMID: 35844925 PMCID: PMC9281931 DOI: 10.1002/fsn3.2853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022] Open
Abstract
The muscle from Xilingol indigenous sheep breeds are famous in China, and the FecB genotype in this population remains uncharacterized. In this study, SNPs in the FecB locus were investigated by pyrosequencing, and an optimized PCR-RFLP technique was generated to identify SNPs. In addition, an efficient technique for high-throughput identification of SNPs in FecB was optimized using TaqMan real-time PCR and breed-conservative primers and SNP-specific probes. By genotyping the FecB locus in the muscle of Xilingol indigenous sheep breeds using a novel TaqMan real-time PCR assay, our study has generated the groundwork for the authentication of Xilingol mutton based on the specific gene and the prolificacy-oriented breeding of Xilingol sheep using marker-assisted selection strategies in the future.
Collapse
Affiliation(s)
- Liang Guo
- Xilin Gol Food Testing and Risk Assessment CenterXilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Chun‐Dong Li
- Xilin Gol Food Testing and Risk Assessment CenterXilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Guo‐Qiang Liu
- Xilin Gol Food Testing and Risk Assessment CenterXilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Jian‐Xing Luo
- Xilin Gol Food Testing and Risk Assessment CenterXilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Wei‐Liang Xu
- Xilin Gol Food Testing and Risk Assessment CenterXilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Yuan‐Sheng Guo
- Xilin Gol Food Testing and Risk Assessment CenterXilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| |
Collapse
|
10
|
Zhang D, Zhang X, Li F, Zhao Y, Li X, Wang J, Zhao L, Yang X, Zhang Y, Xu D, Cheng J, Li W, Lin C, Zhou B, Wang W. Expression Profiles of the Ovine IL18 Gene and Association of Its Polymorphism With Hematologic Parameters in Hu Lambs. Front Vet Sci 2022; 9:925928. [PMID: 35847634 PMCID: PMC9280051 DOI: 10.3389/fvets.2022.925928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Hematological traits are important indexes to evaluate health status and immunological conditions in human and livestock. In this study, we measured the hematologic indexes of 819 male Hu lambs and performed the descriptive statistical analysis. The results showed the coefficients of variation of partial indexes were >10%, and the heritability for mean erythrocyte volume (MCV), white blood cell count (WBC), hemoglobin concentration (HGB), hematocrit (HCT), and red blood cell (RBC) distribution-standard deviation (RDW_SD) were medium to high, ranging from 0.17 to 0.43. In addition, Interleukin 18 (IL18), as an important regulator of both innate and acquired immune responses, was selected as candidate gene and subjected to the expression profile analysis, single nucleotide polymorphism (SNP) scanning and association analysis by using quantitative real-time PCR (qRT-PCR), PCR amplification, Sanger sequencing, and KASP genotyping. The results of qRT-PCR indicated that IL18 is predominantly expressed in lymph and lung compared with that in the other tested tissues. In addition, three novel polymorphisms (g. 24991544 A > G, g. 24991651 A > G, and g. 24991749 C > T) were identified in IL18, and the three SNPs were in a strong linkage state. Therefore, only a SNP was genotyped and performed association analysis in the enlarged experimental population, the result of association analysis demonstrated that the polymorphism g. 24991651 A > G was significantly associated with RBC, MCV, MCHC, and RDW_CV. These results will provide the reference values and the novel genetic markers of hematological parameters in sheep.
Collapse
Affiliation(s)
- Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Weimin Wang ; orcid.org/0000-0002-6660-4865
| |
Collapse
|
11
|
Zhang D, Zhang X, Li F, Li X, Zhao Y, Zhang Y, Zhao L, Xu D, Wang J, Yang X, Cui P, Wang W. Identification and characterization of circular RNAs in association with the feed efficiency in Hu lambs. BMC Genomics 2022; 23:288. [PMID: 35399048 PMCID: PMC8996647 DOI: 10.1186/s12864-022-08517-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Circular RNA (circRNA), as a new members of noncoding RNA family, have vital functions in many biological processes by as microRNA sponges or competing endogenous RNAs (ceRNAs). However, little has been reported about the genetic mechanism of circRNAs regulation of feed efficiency in sheep. Results This study aimed to explore the expression of circRNAs in the liver of Hu sheep with High-RFI (High residual feed intake) and Low-RFI (Low residual feed intake) using transcriptome sequencing. A total of 20,729 circRNAs were identified in two groups, in which 219 circRNAs were found as significantly differentially expressed. Several circRNAs were validated by using RT-PCR, sanger sequencing and RT-qPCR methods. These results demonstrated that the RNA-seq result and expression level of circRNAs identified are reliable. Subsequently, GO and KEGG enrichment analysis of the parental genes of the differentially expressed (DE) circRNAs were mainly involved in immunity response and metabolic process. Finally, the ceRNA regulatory networks analysis showed that the target binding sites for miRNA such as novel_41, novel_115, novel_171 and oar-miR-485-3p in the identified DE cirRNAs. Importantly, two metabolic (SHISA3 and PLEKHH2) and four (RTP4, CD274, OAS1, and RFC3) immune-related target mRNAs were identified from 4 miRNAs. Association analysis showed that the polymorphism (RTP4 c.399 A > G) in the target gene RTP4 were significantly associated with RFI (P < 0.05). Conclusions Analysis of sequencing data showed some candidate ceRNAs that may play key roles in the feed efficiency in sheep by regulating animal immune and metabolic. These results provide the basis data for further study of the biological functions of circRNAs in regulating sheep feed efficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08517-5.
Collapse
|
12
|
Chen S, Tao L, He X, Di R, Wang X, Chu M. Single-nucleotide polymorphisms in <i>FLT3</i>, <i>NLRP5</i>, and <i>TGIF1</i> are associated with litter size in Small-tailed Han sheep. Arch Anim Breed 2021; 64:475-486. [PMID: 35024433 PMCID: PMC8738861 DOI: 10.5194/aab-64-475-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Previous studies have indicated that FLT3, NLRP5, and TGIF1 play a pivotal role in sheep fecundity. Nevertheless, little is known about the association of the polymorphisms of these genes with litter size (LS). In this study, the selected single-nucleotide polymorphisms (SNPs) were genotyped using a Sequenom MassARRAY® platform, and the distribution of different genotypes of the SNPs in the seven sheep breeds (Small-tailed Han, Hu, Cele Black, Suffolk, Tan, Prairie Tibetan, and Sunite sheep) were analyzed. The reliability of the estimated allele frequency for all seven SNPs was at least 0.9545. Given the association of the TGIF1 g.37866222C > T polymorphism with LS in Small-tailed Han sheep (p<0.05), fecundity differences might be caused by the change in amino acid from proline (Pro) to serine (Ser), which has an impact on secondary, tertiary protein structures with concomitant TGIF1 functionality changes. The FLT3 rs421947730 locus has a great effect on the LS (p<0.05), indicating that the locus of FLT3 in synergy with KILTG is likely to facilitate ovarian follicle maturation and ovulation. Moreover, NLRP5 rs426897754 is associated with the LS of the second and third parities (p<0.05). We speculate that a synonymous variant of NLRP5 may be involved in folliculogenesis accompanied by BMP15, FSHR, BMPR1B, AMH, and GDF9, resulting in the different fecundity of Small-tailed Han sheep. Our studies provide valuable genetic markers for sheep breeding.
Collapse
|
13
|
Di R, Wang F, Yu P, Wang X, He X, Mwacharo JM, Pan L, Chu M. Detection of Novel Variations Related to Litter Size in BMP15 Gene of Luzhong Mutton Sheep ( Ovis aries). Animals (Basel) 2021; 11:ani11123528. [PMID: 34944305 PMCID: PMC8698048 DOI: 10.3390/ani11123528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary BMP15 is a critical gene in sheep reproduction. Most of its variations have been reported in European sheep. In this study, the entire open reading frame (ORF) region of BMP15 was sequenced in 154 Luzhong mutton sheep. Among 13 identified variations, six were novel. Four SNPs (ENSOART00000010201.1:c.352+342C>A, c.352+1232T>C, c.352+1165A>G and c.353-2036T>A) were significantly associated with litter size, and could be used as candidate genetic markers for improving litter size. The results also suggested possible interaction between BMP15 and FecB/GDF9. Abstract Litter size is an important economic trait in the mutton sheep industry. BMP15 is one of the key candidate genes for litter size in sheep. In this study, the entire ORF region of BMP15 was sequenced in 154 Luzhong mutton ewes, and the novel variations were determined. The association between polymorphism in BMP15 and litter size was analyzed using a general linear model. Six out of a total of thirteen variations were identified to be novel. Association analysis indicated that four (SNPs ENSOART00000010201.1:c.352+342C>A, c.352+1232T>C, c.352+1165A>G and c.353-2036T>A) were significantly associated with litter size. The joint analysis among three major genes (BMP15, BMPR1B and GDF9) exhibited significant interaction effects in three combinations (FecB and c.352+1232T>C of BMP15; FecB and c.352+1165A>G of BMP15; c.352+342C>A of BMP15 and ENSOART00000014382.1:c.994G>A of GDF9). For the SNPs c.352+1232T>C and c.352+342C>A, the global distribution of allele frequencies showed that the highest variation frequency occurs in Western Europe. In conclusion, the results demonstrated that BMP15 is a major gene for litter size in Luzhong mutton sheep and candidate SNPs associated with litter size were identified.
Collapse
Affiliation(s)
- Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.D.); (F.W.); (P.Y.); (X.W.); (X.H.)
| | - Fengyan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.D.); (F.W.); (P.Y.); (X.W.); (X.H.)
| | - Ping Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.D.); (F.W.); (P.Y.); (X.W.); (X.H.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.D.); (F.W.); (P.Y.); (X.W.); (X.H.)
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.D.); (F.W.); (P.Y.); (X.W.); (X.H.)
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa P.O. Box 5689, Ethiopia;
- Animal and Veterinary Sciences, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Midlothian EH25 9RG, UK
| | - Linxiang Pan
- Shandong Yingtai Agriculture and Animal Husbandry Technology Co., Ltd., Jinan 271114, China;
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.D.); (F.W.); (P.Y.); (X.W.); (X.H.)
- Correspondence: ; Tel.: +86-010-6281-9850
| |
Collapse
|
14
|
Zhang S, Gao X, Jiang Y, Shen Y, Xie H, Pan P, Huang Y, Wei Y, Jiang Q. Population validation of reproductive gene mutation loci and association with the litter size in Nubian goat. Arch Anim Breed 2021; 64:375-386. [PMID: 34584939 PMCID: PMC8461558 DOI: 10.5194/aab-64-375-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/20/2021] [Indexed: 01/05/2023] Open
Abstract
Litter size is an important component trait of doe
reproduction. By improving it, production efficiency and economic benefits
can be significantly provided. Genetic marker-assisted selection (MAS) based
on proven molecular indicators could enhance the efficacy of goat selection,
as well as litter size trait. Many molecular markers have been identified
that they can be used to improve litter size in different goat breeds.
However, the presence and value of these markers vary among goat breeds. In
the present study, we used the reported loci on other breeds of goat as
candidate loci to detect whether these loci appear in this Nubian goat
population; then we proceed to genotype and detect surrounding loci (50 bp)
by multiplex PCR and sequencing technology. As a result, 69
mutations (59 SNPs and 10 indels) were screened out from 23 candidate genes
in Nubian goat population, 12 loci were significantly associated with
the litter size of first-parity individuals; 5 loci were significantly
associated with the litter size of second-parity individuals; 3 loci
were significantly associated with the litter size of third-parity
individuals. In addition, five loci were significantly associated with the
average litter size. The additive effect value of KITLG: g.18047318 G>A in first parity, KITLG: g.18152042G>A in third parity, KISS-1: g.1341674
C>G in first parity, and GHR: g.32134187G>A in
second parity exceed more than 0.40, and the preponderant alleles are G, C,
A and G, respectively. Further, linkage disequilibrium analysis of 21 mutation
loci shows that 3 haplotype blocks are formed, and the litter size of
combination type AACC in KISS-1 gene and AAGG in KITLG gene are significantly lower
than that of other combinations genotype in first parity (P<0.05). These findings
can provide effective candidate DNA markers for selecting superior
individuals in Nubian goat breeding.
Collapse
Affiliation(s)
- Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaotong Gao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yujian Shen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongyue Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Peng Pan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yingming Wei
- Institute for New Rural Development, Guangxi University, Nanning 530004, Guangxi, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
15
|
Akhatayeva Z, Bi Y, He Y, Khan R, Li J, Li H, Pan C, Lan X. Survey of the relationship between polymorphisms within the BMPR1B gene and sheep reproductive traits. Anim Biotechnol 2021:1-10. [PMID: 34586970 DOI: 10.1080/10495398.2021.1979023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The BMPRIB gene is one of the main genes that can be used as a molecular genetic marker for the early selection of highly productive ewes. It is well-documented that the p.Q249R (g.746A > G) is the first mutation in the kinase domain of the BMPR1B gene that is highly related to increased ovulation rate and litter size. It is likely that the presence of the p.Q249R mutation in the sheep population is one of the factors contributing to the outstanding productivity of the sheep. Moreover, in recent years, researchers have been explored other polymorphisms in the BMPR1B gene with respect to reproductive traits in sheep. Therefore, we carried out the current study to evaluate the association between polymorphisms in this gene and sheep litter size from all appropriate studies. As a result, among 41 polymorphisms in the ovine BMPRIB gene, eight variants, including p.Q249R (g.746A > G), g.29362047T > C, g.29427689G > A, BMPR1B-2 (ss:1960972599), g.29382337G > A, g.29382340G > A, rs1092293287 (10 bp insertion/deletion) and g.29380965A > G were found to be associated with litter size in sheep. This systematic analysis presents the most current data evidence for BMPRIB polymorphisms, highlighting the need for further large-scale studies to determine more important variants.
Collapse
Affiliation(s)
- Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiwen He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Library of Northwest A&F University, Northwest A&F University, Yangling, Shaanxi, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Jie Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haixia Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Li Z, He X, Zhang X, Zhang J, Guo X, Sun W, Chu M. Analysis of Expression Profiles of CircRNA and MiRNA in Oviduct during the Follicular and Luteal Phases of Sheep with Two Fecundity ( FecB Gene) Genotypes. Animals (Basel) 2021; 11:ani11102826. [PMID: 34679847 PMCID: PMC8532869 DOI: 10.3390/ani11102826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
CircRNA and miRNA, as classes of non-coding RNA, have been found to play pivotal roles in sheep reproduction. There are many reports of circRNA and miRNA in the ovary and uterus, but few in the oviduct. In this study, RNA-Seq was performed to analyze the expression profile of circRNA and miRNA in the oviduct during the follicular phase and luteal phase of sheep with FecBBB and FecB++ genotypes. The results showed that a total of 3223 circRNAs and 148 miRNAs were identified. A total of 15 DE circRNAs and 40 DE miRNAs were found in the comparison between the follicular phase and luteal phase, and 1 DE circRNA and 18 DE miRNAs were found in the comparison between the FecBBB genotype and FecB++ genotype. GO and KEGG analyses showed that the host genes of DE circRNAs were mainly enriched in the Rap1 signaling pathway, PI3K-Akt signaling pathway and neuroactive ligand-receptor interactions. Novel_circ_0004065, novel_circ_0005109, novel_circ_0012086, novel_circ_0014274 and novel_circ_0001794 were found to be possibly involved in the oviductal reproduction process. GO and KEGG analyses showed that the target genes of DE miRNAs were mainly enriched in insulin secretion, the cAMP signaling pathway, the cGMP-PKG signaling pathway, the Rap1 signaling pathway and the TGF-β signaling pathway, and the target genes LPAR1, LPAR2, FGF18, TACR3, BMP6, SMAD4, INHBB, SKP1 and TGFBR2 were found to be associated with the reproductive process. Miranda software was used to identify 27 miRNAs that may bind to 13 DE circRNAs, including miR-22-3p (target to novel_circ_0004065), miR-127, miR-136 (target to novel_circ_0000417), miR-27a (target to novel_circ_0014274) and oar-miR-181a (target to novel_circ_ 0017815). The results of this study will help to elucidate the regulatory mechanisms of circRNAs and miRNAs in sheep reproduction. Our study, although not establishing direct causal relationships of the circRNA and miRNA changes, enriches the sheep circRNA and miRNA database and provides a basis for further studies on sheep reproduction.
Collapse
Affiliation(s)
- Zhifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
17
|
Mo F, Sun W, Zhang L, Zhang X, La Y, Xiao F, Jia J, Jin J. Polymorphisms in BMPRIB gene affect litter size in Chinese indigenous sheep breed. Anim Biotechnol 2021:1-8. [PMID: 34570690 DOI: 10.1080/10495398.2021.1980400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The BMPRIB gene belongs to the TGF-β superfamily and is considered to be a regulator of sheep reproductive performance. Single nucleotide polymorphisms (SNPs) of BMPRIB gene in the Small Tail Han, Hu, Mongolian, Oula, Gansu Alpine Fine-wool, Dorper and Australian White sheep were detected by Sanger sequencing. Five SNPs (rs427897187 G > A, rs418841713 A > G, rs159952533 T > C, rs429416173 C > A and rs403555643 A > G) of BMPRIB gene were identified. For rs427897187 G > A, further analysis revealed that genotype GG and GA had 0.26 (p < 0.05) and 0.33 (p < 0.05) litter size less than those with genotype AA in Oula sheep. For rs403555643 A > G, further analysis revealed that genotype GG and AG had 0.65 (p < 0.05) and 0.38 (p < 0.05) litter size more than those with genotype AA in Oula sheep, and genotype GG had 0.56 (p < 0.05) litter size more than those with genotype AA in Mongolian sheep. The results showed that rs427897187 G > A and rs403555643 A > G are potential molecular markers wich could improve litter size of Chinese indigenous sheep and be used in Chinese indigenous sheep breeding.
Collapse
Affiliation(s)
- Futao Mo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gansu Grassland Technical Extension Station, Lanzhou, China
| | - Weibo Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyan Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Xiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianlei Jia
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jipeng Jin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Gao Y, Hao Q, Cang M, Wang J, Yu H, Liu Y, Zhang W, Tong B. Association between novel variants in BMPR1B gene and litter size in Mongolia and Ujimqin sheep breeds. Reprod Domest Anim 2021; 56:1562-1571. [PMID: 34543455 DOI: 10.1111/rda.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 11/27/2022]
Abstract
Prolificacy is an important trait of animals, specifically for sheep. The Bone morphogenetic protein receptor 1B (BMPR1B) is a major gene affecting the litter size of many sheep breeds. The well-known FecB mutation (Q249R) was associated fully with the hyper prolific phenotype of Booroola Merino. However, the identification of variation in all exonic regions of BMPR1B was rare. In this study, we sequenced all exonic regions of BMPR1B gene of Mongolia sheep breed, and ten novel variants were detected by direct sequencing. Among them, the litter size of the Mongolia ewes with the CC genotype was significantly higher (0.34 additional lambs, p < .05) than those with the TT genotype of the g.29346567C>T single nucleotide polymorphism (SNP). The litter size of the Mongolia ewes with the TT genotype was significantly higher (0.19 additional lambs, p < .05 and .31 additional lambs, p < .01, respectively) than those with the GT and GG genotypes of the c.1470G>T SNP. The silent c.1470G>T mutation is predicted to increase the stability of the mRNA secondary structure through reducing minimum free energy and is predicted to change the mRNA secondary structure of BMPR1B. Our findings may give potentially useful genetic markers for increasing litter size in sheep.
Collapse
Affiliation(s)
- Yuanyuan Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qi Hao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ming Cang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jianguo Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haiquan Yu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongbin Liu
- Institute of Animal Science, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenguang Zhang
- College of Animal Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Tong
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
19
|
Guo X, Zhang S, Yang H, Pei J, Wu X, Bao P, Liang C, Xiong L, Chu M, Lan X, Yan P. Bovine TMEM95 gene: Polymorphisms detecting in five Chinese indigenous cattle breeds and their association with growth traits. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Liu L, Hu R, Li C, Li X, Ni W, Yao R, Zhang M, Li H, Xu Y, Ullah Y, Hu S. Rapid visual detection of FecB gene expression in sheep. Open Life Sci 2021; 15:902-911. [PMID: 33817277 PMCID: PMC7874556 DOI: 10.1515/biol-2020-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022] Open
Abstract
Sheep play an important role in agricultural production and people's lives, and fecundity is one of the most important economic traits of sheep for sheep breeders. The Booroola fecundity (FecB) gene has a certain correlation with litter size in sheep. Therefore, this study aims to detect FecB expression quickly, accurately and visually. Here, we used the nucleic acid dye SYBR Green I to detect FecB with the amplification refractory mutation system (ARMS), which can efficiently, rapidly, economically and visually detect FecB expression in sheep. After ARMS polymerase chain reaction (PCR), SYBR Green I was directly added to the ARMS products, and whether the sheep carried FecB was judged by directly observing the color change in the PCR tube. Homozygous (BB) or heterozygous (B+) samples with FecB mutation were bright green, while wild type (++) samples without FecB were orange yellow. This study suggested that this method has 100% accuracy and 0.5 ng/µL sensitivity. To our knowledge, this is the first report that shows the integration of the ARMS with SYBR Green I to detect FecB expression in sheep visually.
Collapse
Affiliation(s)
- Li Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.,College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yaseen Ullah
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
21
|
Polymorphism Detection of GDF9 Gene and Its Association with Litter Size in Luzhong Mutton Sheep ( Ovis aries). Animals (Basel) 2021; 11:ani11020571. [PMID: 33671790 PMCID: PMC7926531 DOI: 10.3390/ani11020571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary GDF9 and BMPR1B are two important reproduction genes. In this study, the whole coding region of GDF9 was sequenced, of which the mutations were detected in Luzhong mutton sheep. The results suggested that two single nucleotide polymorphisms (SNPs), g.41768501A > G and g.41768485 G > A in GDF9 gene were associated with litter size. The g.41768485 G > A is a missense mutation which is predicted to affect the tertiary structure of the protein. Thus, these two mutations may be potential effective genetic markers to improve the litter size in sheep. Abstract Litter size is one of the most important economic traits in sheep. GDF9 and BMPR1B are major genes affecting the litter size of sheep. In this study, the whole coding region of GDF9 was sequenced and all the SNPs (single nucleotide polymorphisms) were determined in Luzhong mutton ewes. The FecB mutation was genotyped using the Sequenom MassARRAY®SNP assay technology. Then, the association analyses between polymorphic loci of GDF9 gene, FecB, and litter size were performed using a general linear model procedure. The results showed that eight SNPs were detected in GDF9 of Luzhong mutton sheep, including one novel mutation (g.41769606 T > G). The g.41768501A > G, g.41768485 G > A in GDF9 and FecB were significantly associated with litter size in Luzhong mutton ewes. The g.41768485 G > A is a missense mutation in the mature GDF9 protein region and is predicted to affect the tertiary structure of the protein. The results preliminarily demonstrated that GDF9 was a major gene affecting the fecundity of Luzhong mutton sheep and the two loci g.41768501A > G and g.41768485 G > A may be potential genetic markers for improving litter size.
Collapse
|
22
|
Comparative transcriptome of reproductive axis in Chinese indigenous sheep with different FecB genotypes and prolificacies. Anim Reprod Sci 2020; 223:106624. [PMID: 33126044 DOI: 10.1016/j.anireprosci.2020.106624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
In the present study, there were 128, 263, and 139 differentially expressed genes (DEGs) from the ovary, pituitary, and hypothalamus, respectively, with the FecB B+/FecB ++ genotype. Results indicated that there was a synchronized, and differential increase in mRNA transcript abundances for genes encoding for ovarian steroidogenesis-signaling proteins in the ovary, TGF-β-signaling in hypothalamus, cAMP-signaling-transduction, and dopaminergic-synapse pathways in the pituitary. The values for these variables were associated with mean prolificacy in indigenous sheep and results provided indications for candidate regulator proteins that coordinate processes related to prolificacy in ewes. Furthermore, the results when there was evaluation of the FecB-genotype-specific co-expression modules implied that CYP17 was the hub gene connecting the pathways and for modulation of folliculogenesis and ovulation in the ewe with the FecB B+ genotype.
Collapse
|
23
|
Yang Z, Yang X, Liu G, Deng M, Sun B, Guo Y, Liu D, Li Y. Polymorphisms in BMPR-IB gene and their association with litter size trait in Chinese Hu sheep. Anim Biotechnol 2020; 33:250-259. [PMID: 32657205 DOI: 10.1080/10495398.2020.1789158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Identification and utilization of sheep major fecundity genes offer opportunities for the increase in litter size, as well as the improvement of production efficiency in livestock industry. BMPR-IB gene belongs to the TGF-β superfamily, and is also considered as a regulator for sheep reproductive performance due to its involvement in the mammalian gametogenesis pathway. This study aimed to detect the variations of BMPR-IB gene in Hu sheep (N = 934) and to evaluate their effects on the litter size trait. qRT-PCR results showed that the mRNA expression level of BMPR-IB in kidney was the highest. And in the tissues of ovary and pituitary, the expression levels of prolific group were significantly higher than that of non-prolific group (p < 0.05). Through DNA sequencing and PCR-RFLP, three SNPs were identified in the genomic region of BMPR-IB gene; the individuals with CC in g.29362047T > C, AA in g.29427689G > A and GG in FecB had better fecundity characterization. Additionally, association analysis indicated that two diplotypes of Hap2/2 and Hap2/4 showed larger litter size. Overall, our results verified several useful markers which would contribute to further development of sheep breeding strategies.
Collapse
Affiliation(s)
- Zhenwei Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Xinyue Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
|
25
|
Zhang Z, Tang J, He X, Di R, Chu M. Mutations in NLRP5 and NLRP9 are Associated with Litter Size in Small Tail Han Sheep. Animals (Basel) 2020; 10:ani10040689. [PMID: 32326631 PMCID: PMC7222816 DOI: 10.3390/ani10040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 01/06/2023] Open
Abstract
Previous studies showed that the NLR family pyrin domain-containing 5 (NLRP5) and NLRP9 genes are two important reproductive genes; however, their effects on sheep litter size are unknown. Therefore, in this study, we first genotyped seven sheep breeds via the MassARRAY® SNP system at the loci g.60495375A > G, g.60495363G > A, and g.60499690C > A in NLRP5, and g.59030623T > C and g.59043397A > C in NLRP9. Our results revealed that each locus in most sheep breeds contained three genotypes. Then, we conducted population genetic analysis of single nucleotide polymorphisms in NLRP5 and NLRP9, and we found that the polymorphism information content value in all sheep breeds ranged from 0 to 0.36, and most sheep breeds were under Hardy-Weinberg equilibrium (p > 0.05). Furthermore, association analysis in Small Tail Han sheep indicated that two loci, g.60495363G > A in NLRP5 and g.59030623T > C in NLRP9, were highly associated with litter size. The mutation in g.60495363G > A may decrease interactions of NLRP5 with proteins, such as GDF9, whereas the mutation in g.59030623T > C may enhance the combining capacity of NLRP9 with these proteins; consequently, these mutations may influence the ovulation rate and even litter size. The findings of our study provide valuable genetic markers that can be used to improve the breeding of sheep and even other mammals.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: ; Tel.: +86-010-6281-9850
| |
Collapse
|
26
|
Li Y, Jin W, Wang Y, Zhang J, Meng C, Wang H, Qian Y, Li Q, Cao S. Three Complete Linkage SNPs ofGDF9Gene Affect the Litter Size Probably Mediated by OCT1 in Hu Sheep. DNA Cell Biol 2020; 39:563-571. [DOI: 10.1089/dna.2019.4984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Yinxia Li
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Wenwen Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Jun Zhang
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Chunhua Meng
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Huili Wang
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Yong Qian
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaoxian Cao
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
27
|
Association of Polymorphisms in Candidate Genes with the Litter Size in Two Sheep Breeds. Animals (Basel) 2019; 9:ani9110958. [PMID: 31726757 PMCID: PMC6912326 DOI: 10.3390/ani9110958] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Hu sheep and Small-tailed Han sheep are the most widely raised and most famous maternal sheep breeds in China, which are known for precocious puberty, perennial oestrus and high fecundity (1-6 lambs each parity). Therefore, it is crucial to increase litter size of these two breeds for intensive sheep industry. The objective of this study was to identify potential genetic markers linked with sheep litter size located at ten genes. This study collected blood sample of 537 Hu sheep and 420 Small-tailed Han sheep with litter size of first parity. The average litter sizes in Hu sheep and Small-tailed Han sheep were 2.21 and 1.93. DNA-pooling sequencing method was used for detecting the potential single nucleotide polymorphisms (SNPs) in ten genes related to follicle development and female reproduction. SNPscan® was used for individually genotyping. As a result, a total of 78 putative SNPs in nine out of ten candidate genes (except NOG) were identified. In total, 50 SNPs were successfully genotyped in Hu sheep and Small-tailed Han sheep. After quality control, a total of 42 SNPs in Hu sheep and 44 SNPs in Small-tailed Han sheep were finally used for further analysis. Association analysis revealed that nine SNPs within six genes (KIT: g.70199073A>G, KITLG: g.124520653G>C, ADAMTS1: g.127753565T>C, ADAMTS1: g.127754640G>T, NCOA1: g.31928165C>T, NCOA1: g.32140565G>A, LIFR: g.35862868C>T, LIFR: g.35862947G>T and NGF: g.91795933T>C) were significantly associated with litter size in Hu sheep or Small-tailed Han sheep. A combined haplotypes analysis of the two loci (LIFR: g.35862868C>T and LIFR: g.35862947G>T) revealed that H2H3 (CTTT) combined haplotypes had the largest litter size than the rest combined haplotypes and more than those with either mutation alone in Small-tailed Han sheep. Taken together, our study suggests that nine significant SNPs in six genes can be served as useful genetic markers for MAS in sheep.
Collapse
|
28
|
Yue C, Bai WL, Zheng YY, Hui TY, Sun JM, Guo D, Guo SL, Wang ZY. Correlation analysis of candidate gene SNP for high-yield in Liaoning cashmere goats with litter size and cashmere performance. Anim Biotechnol 2019; 32:43-50. [PMID: 31424321 DOI: 10.1080/10495398.2019.1652188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was designed to identify the relationship of four genes (GDF9, BMPR-IB, FecB and ESR) polymorphisms in the 3'UTR region with litter size and cashmere performance of Liaoning cashmere goats (LCG, n = 1140). The ESR C463T and T575G loci of LCG were genotyped. The results of correlation analysis showed that five effective single nucleotide polymorphisms (SNPs) loci (C47T, C94T, C299T, C463T and T575G) were found in the four genes. The lambing number of CC and CT genotypic individuals at FecB C94T locus was significantly higher than that of TT genotypic individuals (45.7 and 46.8%, respectively); the lambing number of CC genotypic individuals at ESR C463T locus was significantly higher than that of CT, TT genotypic individuals (9 and 15%, respectively); There was a positive correlation between CC genotype at C463T locus and cashmere fineness. In this study, the relationship between FecB C94T and ESR C463T loci C alleles and lambing number in LCG was preliminarily revealed. These results further confirmed that FecB and ESR genes may be significantly correlated with high fecundity of LCG.
Collapse
Affiliation(s)
- Chang Yue
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agriculture University, Shenyang, P. R. China
| | - Wen L Bai
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agriculture University, Shenyang, P. R. China
| | - Yuan Y Zheng
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agriculture University, Shenyang, P. R. China
| | - Tai Y Hui
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agriculture University, Shenyang, P. R. China
| | - Jia M Sun
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agriculture University, Shenyang, P. R. China
| | - Dan Guo
- Animal Science Research Institute of Liaoning Province, Liaoyang, P. R. China
| | - Su L Guo
- Prosperous community, Changshun Town, Huade, P. R. China
| | - Ze Y Wang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agriculture University, Shenyang, P. R. China
| |
Collapse
|
29
|
Ma X, Li P, Zhang Q, He L, Su G, Huang Y, Lu Z, Hu W, Ding H, Huang R. Transcriptome analysis of the endometrium from Chinese Erhualian sows that differ in calcium ion concentration and litter size. Anim Genet 2019; 50:326-333. [PMID: 31058330 DOI: 10.1111/age.12788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
Embryonic survival rate, an important factor in the fecundity of sows, is affected by endometrium-secreting histotroph. A higher concentration of calcium ion has been observed in the uterus of highly prolific Erhualian sows (EH) compared with those of less prolific (EL) sows. This suggests that EH sows have better establishment and maintenance of pregnancies, thus increasing embryonic survival rate during the peri-implantation period. To understand the mechanisms of how the endometrium-secreting histotroph affects embryonic survival rate during the Erhualian peri-implantation period, the expression patterns of endometrial mRNA in the EH and EL sows on day 12 of gestation were analyzed using RNA sequencing technology. A total of 164 differentially expressed genes (DEGs) were identified (Padj < 0.05, |log2 (FC)| ≥ 1), including 46 upregulated and 118 downregulated genes in EH compared to EL. Gene Ontology enrichment indicated that a subset of DEGs was involved in calcium ion binding and cell adhesion. Solute carrier family 8 member A3 and solute carrier family 24 member 4, identified as upregulated genes (Padj < 0.05) in EH, were considered key candidate genes expressed in the endometrium affecting embryonic survival rate during the peri-implantation period. The results improve understanding of the genetic mechanism underlying the variation in litter size of Erhualian pigs during the peri-implantation period.
Collapse
Affiliation(s)
- X Ma
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - P Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Q Zhang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - L He
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - G Su
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, 8830, Denmark
| | - Y Huang
- Changzhou Jiaoxi Cooperatives of Erhualian Pigs, Changzhou, 213116, China
| | - Z Lu
- Changshu Animal Husbandry and Veterinary Station, Suzhou, 215500, China
| | - W Hu
- Changshu Animal Husbandry and Veterinary Station, Suzhou, 215500, China
| | - H Ding
- Changshu Agriculture Committee, Suzhou, 215500, China
| | - R Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
30
|
Wang W, Zhang X, Zhou X, Zhang Y, La Y, Zhang Y, Li C, Zhao Y, Li F, Liu B, Jiang Z. Deep Genome Resequencing Reveals Artificial and Natural Selection for Visual Deterioration, Plateau Adaptability and High Prolificacy in Chinese Domestic Sheep. Front Genet 2019; 10:300. [PMID: 31001329 PMCID: PMC6454055 DOI: 10.3389/fgene.2019.00300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Sheep were one of the earliest domesticated animals. Both artificial and natural selection during domestication has resulted in remarkable changes in behavioral, physiological, and morphological phenotypes; however, the genetic mechanisms underpinning these changes remain unclear, particularly for indigenous Chinese sheep. In the present study, we performed pooled whole-genome resequencing of 338 sheep from five breeds representative of indigenous Chinese breeds and compared them to the wild ancestors of domestic sheep (Asian mouflon, Ovis orientalis) for detection of genome-wide selective sweeps. Comparative genomic analysis between domestic sheep and Asian mouflon showed that selected regions were enriched for genes involved in bone morphogenesis, growth regulation, and embryonic and neural development in domestic sheep. Moreover, we identified several vision-associated genes with funtional mutations, such as PDE6B (c.G2994C/p.A982P and c.C2284A/p.L762M mutations), PANK2, and FOXC1/GMSD in all five Chinese native breeds. Breed-specific selected regions were determined including genes such as CYP17 for hypoxia adaptability in Tibetan sheep and DNAJB5 for heat tolerance in Duolang sheep. Our findings provide insights into the genetic mechanisms underlying important phenotypic changes that have occurred during sheep domestication and subsequent selection.
Collapse
Affiliation(s)
- Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Yangzi Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Yongfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youzhang Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
31
|
Li X, Ye J, Han X, Qiao R, Li X, Lv G, Wang K. Whole-genome sequencing identifies potential candidate genes for reproductive traits in pigs. Genomics 2019; 112:199-206. [PMID: 30707936 DOI: 10.1016/j.ygeno.2019.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 11/24/2022]
Abstract
Reproductive performance is a complex quantitative trait, that is determined by multiple genes, regulatory pathways and environmental factors. A list of major genes with large effect have been detected, although multiple QTLs are identified. To identify candidate genes for pig prolificacy, whole genome variants from five high- and five low-prolificacy Yorkshire sows were collected using whole-genome resequencing. A total of 13,955,609 SNPs and 2,666,366 indels were detected across the genome. Common differential SNPs and indels were identified between the two groups of sows. Genes encoding components of the TGF-beta signaling pathway were enriched with the variations, including BMP5, BMP6, BMP7, ACVR1, INHBA, ZFYVE9, TGFBR2, DCN, ID4, BAMBI, and ACVR2A. Several differential variants within these genes related to reproductive traits were identified to be associated with litter size. A comparison of selective regions and published QTL data suggests that NEDD9, SLC39A11, SNCA, and UNC5D are candidate genes for reproduction traits.
Collapse
Affiliation(s)
- Xinjian Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Jianwei Ye
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Xuelei Han
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Ruimin Qiao
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Xiuling Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Gang Lv
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Kejun Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|