1
|
Odetayo AF, Akhigbe RE, Bassey GE, Hamed MA, Olayaki LA. Impact of stress on male fertility: role of gonadotropin inhibitory hormone. Front Endocrinol (Lausanne) 2024; 14:1329564. [PMID: 38260147 PMCID: PMC10801237 DOI: 10.3389/fendo.2023.1329564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of stress-induced male infertility. However, apart from oxidative stress, gonadotropin inhibitory hormone (GnIH) plays a major role. The present study provides a detailed review of the role of GnIH in stress-induced male infertility. Available evidence-based data revealed that GnIH enhances the release of corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pituitary-testicular axis, and by extension testosterone biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower spermatogenesis, and deteriorate sperm quality and function. In conclusion, GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility. Suppression of GnIH under stressful conditions may thus be a beneficial prophylactic and/or therapeutic strategy.
Collapse
Affiliation(s)
- Adeyemi F. Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | | |
Collapse
|
2
|
Kaiser M, Jaillardon L. Pathogenesis of the crosstalk between reproductive function and stress in animals-part 1: Hypothalamo-pituitary-adrenal axis, sympatho-adrenomedullary system and kisspeptin. Reprod Domest Anim 2023; 58 Suppl 2:176-183. [PMID: 37724657 DOI: 10.1111/rda.14444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 09/21/2023]
Abstract
Stress is defined as a disruption of the body homeostasis in response to modest as well as perceived challenge. Two main physiological routes, the hypothalamic-pituitary-adrenal system (HPA) and the sympatho-adrenomedullary system (SAM), aim to maintain or restore homeostasis by mutual interaction. SAM is quickly-reacting as it primarily works through the nervous system-the sympathetic nervous system. In response to stress, signals are sent to activate the adrenal medulla which releases catecholamines (primarily adrenaline and norepinephrine). The catecholamines have a momentary effect on the body's organs that are prepared for a fight situation. At the same time, the stressor activates the HPA axis by signals from the brain causing secretion of the pituitary hormone adrenocorticotropic hormone (ACTH). ACTH acts on the adrenal cortex, which secretes glucocorticoids, including cortisol. Since HPA primarily works through hormones, the system is slightly slower than SAM and gives rise to a metabolic effect. While short-term stress response is an adaptive and beneficial process, chronic or excessive stress can lead to a range of negative health outcomes including reproductive disorders and infertility. Several mechanisms have been proposed to explain the link between stress and reproduction. This includes in particular kisspeptin, which is closely related to reproduction, as it is a powerful stimulator of the Hypothalamic-pituitary-gonadal (HPG) system. The present review, through current knowledge in various male and female species, deals with the role of the SAM and the HPA, including the major action of kisspeptin and glucocorticoids that trigger the consequences of psychological or physiological stress on reproductive function.
Collapse
Affiliation(s)
- Marianne Kaiser
- Management and Modelling, Department of Animal and Veterinary Sciences, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Laetitia Jaillardon
- Oniris, LabOniris, Nantes Atlantic National College of Veterinary Medicine, Food Sciences and Engineering, Nantes, France
| |
Collapse
|
3
|
Bailey VN, Sones JL, Camp CM, Gomes VC, Oberhaus EL. Endocrine and ovarian responses to combined estradiol benzoate-sulpiride in seasonally anovulatory mares treated with kisspeptin. Anim Reprod Sci 2022; 247:107087. [DOI: 10.1016/j.anireprosci.2022.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
|
4
|
Dardente H, Simonneaux V. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. J Neuroendocrinol 2022; 34:e13124. [PMID: 35384117 DOI: 10.1111/jne.13124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Qin YS, Bai JH, Zhang SL, Dai JG, Xu XL, Feng T, Song YQ, Xiao LL, Liu Y. Effects of kisspeptin-10 on the reproductive performance of sows in a fixed-time artificial insemination programme. Animal 2022; 16:100509. [PMID: 35436648 DOI: 10.1016/j.animal.2022.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022] Open
Abstract
Kisspeptin (KP) is a major positive regulator of the hypothalamo-pituitary-gonadal axis and affects female reproductive cyclicity in mammals. It offers an attractive alternative strategy to control reproduction in fixed-time artificial insemination (FTAI) protocols. We aimed to evaluate the effects of different doses of kisspeptin-10 (KP-10) on sow reproductive performance in FTAI protocols. One hundred ninety-eight weaned sows were divided into three groups at random. A FTAI-GnRH group of sows (n = 98) received 100 µg (2 mL) gonadotropin-releasing hormone (GnRH; gonadorelin) by intramuscular injection at 96 h after weaning (t = 0 h); FTAI-KPL (KPL: low-dose KP-10, n = 50), and FTAI-KPH groups of sows (KPH: high-dose KP-10, n = 50) received 0.5 or 1 mg KP-10 (2 mL) respectively at 96 h after weaning. Sows were checked twice daily for oestrus. Ultrasonographic evaluations were performed to determine the follicular diameter and time of ovulation; blood samples were collected immediately before injection (t0 = 0 min) and at 15, 30, 45, 60, 75, 90 min, 24 and 48 h postinjection. Sows were inseminated at 112 and 132 h after weaning. The oestrus rates (96 vs 92%; 96 vs 88%) and weaning-to-oestrus intervals (98.9 vs 98.6 h; 98.9 vs 97.1 h) were not affected by treatment, but oestrus in the FTAI-KPL group was significantly longer than in the FTAI-GnRH group (38.7 vs 30.0 h; P < 0.05). The peak LH concentrations were 1.29 times greater than at t0 = 0 in the FTAI-GnRH group, and 1.45 and 1.44 times greater than at t0 = 0 in the FTAI-KPL and FTAI-KPH groups, respectively. Follicular diameters and pregnancy rates (86 vs 88%, 86 vs 80%, respectively) did not differ between the treatments. Moreover, the total numbers of piglets born and those born alive did not differ among the three groups. These findings suggested that 0.5 mg KP-10 given at 96 h after weaning could be used in FTAI programmes to manage batch farrowing in sows.
Collapse
Affiliation(s)
- Y S Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - J H Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - S L Zhang
- Beijing University of Agricultural, College of Animal Science and Technology, Beijing 100096, PR China
| | - J G Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 102206, PR China
| | - X L Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - T Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Y Q Song
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - L L Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Y Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
6
|
Zhao S, Guo Z, Xiang W, Wang P. The neuroendocrine pathways and mechanisms for the control of the reproduction in female pigs. Anim Reprod 2021; 18:e20210063. [PMID: 34925558 PMCID: PMC8677349 DOI: 10.1590/1984-3143-ar2021-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2024] Open
Abstract
Within the hypothalamic-pituitary-gonad (HPG) axis, the major hierarchical component is gonadotropin-releasing hormone (GnRH) neurons, which directly or indirectly receive regulatory inputs from a wide array of regulatory signals and pathways, involving numerous circulating hormones, neuropeptides, and neurotransmitters, and which operate as a final output for the brain control of reproduction. In recent years, there has been an increasing interest in neuropeptides that have the potential to stimulate or inhibit GnRH in the hypothalamus of pigs. Among them, Kisspeptin is a key component in the precise regulation of GnRH neuron secretion activity. Besides, other neuropeptides, including neurokinin B (NKB), neuromedin B (NMB), neuromedin S (NMS), α-melanocyte-stimulating hormone (α-MSH), Phoenixin (PNX), show potential for having a stimulating effect on GnRH neurons. On the contrary, RFamide-related peptide-3 (RFRP-3), endogenous opioid peptides (EOP), neuropeptide Y (NPY), and Galanin (GAL) may play an inhibitory role in the regulation of porcine reproductive nerves and may directly or indirectly regulate GnRH neurons. By combining data from suitable model species and pigs, we aim to provide a comprehensive summary of our current understanding of the neuropeptides acting on GnRH neurons, with a particular focus on their central regulatory pathways and underlying molecular basis.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Zongyi Guo
- Chongqing Academy of Animal Sciences, Chongqing, P. R. China
| | - Wei Xiang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling of Chongqing, P. R. China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
7
|
Zhang X, Li M, Huang M, Peng H, Song X, Chen L, Hu W, Xu W, Luo R, Han D, Shi Y, Cao Y, Li X, Hu C. Effect of RFRP-3, the mammalian ortholog of GnIH, on apoptosis and autophagy in porcine ovarian granulosa cells via the p38MAPK pathway. Theriogenology 2021; 180:137-145. [PMID: 34973645 DOI: 10.1016/j.theriogenology.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
Abstract
RFamide-related peptide-3 (RFRP-3) has been proposed as a key inhibitory regulator of mammalian reproduction. Our previous studies demonstrated that RFRP-3 mediated apoptosis and autophagy of the epididymis in rats and inhibited porcine granulosa cell (GC) proliferation. However, the molecular mechanisms of the RFRP-3 effect on porcine GC apoptosis and autophagy have not been studied before. Herein, we first investigated the role of RFRP-3 in apoptosis and autophagy in cultured porcine GCs in vitro. Our results showed that different doses of RFRP-3 dose-dependently elevated the expression of autophagy markers at both the mRNA and protein levels, whereas the expression of apoptosis markers exhibited a bidirectional, dose-dependent effect. Because the p38MAPK signaling pathway plays essential roles in apoptosis and autophagy, we subsequently evaluated the effect of RFRP-3 on p38MAPK activation. The results showed that 10-6 M RFRP-3 treatment not only significantly decreased p38MAPK phosphorylation but also inhibited the p38MAPK activator U-46619 to promote p38MAPK activation in porcine GCs. Finally, we applied U-46619 to investigate the role of the p38MAPK signaling pathway in apoptosis and autophagy in RFRP-3-treated porcine GCs. The results showed that all doses of RFRP-3 significantly inhibited the U-46619-induced increase in apoptosis in a dose-dependent manner. However, except for the U-46619-induced Beclin-1 expression increase, which was significantly suppressed in high-dose RFRP-3-treated porcine GCs, other doses of RFRP-3 treatment strengthened the U-46619-induced increase in other autophagy markers. In summary, our data demonstrate a critical role for the p38MAPK signaling pathway in the porcine GC cellular response to RFRP-3 by controlling the balance between apoptosis and autophagy.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Ming Li
- Chengdu Research Base of Giant Panda Breeding, China
| | | | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Wen Hu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China.
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China.
| |
Collapse
|
8
|
Mohapatra SS, Mukherjee J, Banerjee D, Das PK, Ghosh PR, Das K. RFamide peptides, the novel regulators of mammalian HPG axis: A review. Vet World 2021; 14:1867-1873. [PMID: 34475710 PMCID: PMC8404114 DOI: 10.14202/vetworld.2021.1867-1873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
The RFamide-related peptides (RFRPs) are the group of neuropeptides synthesized predominantly from the hypothalamus that negatively affects the hypothalamo-hypophyseal-gonadal (hypothalamic–pituitary–gonadal [HPG]) axis. These peptides are first identified in quail brains and emerged as the mammalian orthologs of avian gonadotropin inhibitory hormones. The RFRP-3 neurons in the hypothalamus are present in several mammalian species. The action of RFRP-3 is mediated through a G-protein-coupled receptor called OT7T022. The predominant role of RFRP-3 is the inhibition of HPG axis with several other effects such as the regulation of metabolic activity, stress regulation, controlling of non-sexual motivated behavior, and sexual photoperiodicity in concert with other neuropeptides such as kisspeptin, neuropeptide-Y (NPY), pro-opiomelanocortin, orexin, and melanin. RFamide peptides synthesized in the granulosa cells, interstitial cells, and seminiferous tubule regulate steroidogenesis and gametogenesis in the gonads. The present review is intended to provide the recent findings that explore the role of RFRP-3 in regulating HPG axis and its potential applications in the synchronization of reproduction and its therapeutic interventions to prevent stress-induced amenorrhea.
Collapse
Affiliation(s)
- Smruti Smita Mohapatra
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Kinsuk Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| |
Collapse
|
9
|
Zmijewska A, Czelejewska W, Drzewiecka EM, Franczak A. Effect of kisspeptin (KISS) and RFamide-related peptide-3 (RFRP-3) on the synthesis and secretion of FSH in vitro by pituitary cells in pigs. Theriogenology 2021; 171:72-84. [PMID: 34044335 DOI: 10.1016/j.theriogenology.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Kisspeptins (KISSs) and RFamide-related peptide-3 (RFRP-3) affect the synthesis and secretion of luteinizing hormone (LH) and modulate female reproductive processes. The presence of KISS and RFRP-3 in the porcine pituitary gland and their contribution to the regulation of follicle-stimulating hormone (FSH) synthesis and secretion is unknown. This study analyzed the presence of KISS and RFRP-3 in the pituitary of estrous-cyclic pigs on days 2 to 3, 10 to 11, 12 to 13, 15 to 16 and 19 to 20 and early pregnant pigs on days 10 to 11, 12 to 13 and 15 to 16, and evaluated the effect of KISS and RFRP-3 on β-Fsh mRNA expression and FSH secretion in vitro by pituitary cells collected on selected days of the estrous cycle. The cells were cultured in vitro and treated with KISS (10-6 M, 10-7 M) and RFRP-3 (10-6 M, 10-7 M) or gonadotropin-releasing hormone (GnRH; 100 ng/mL) alone and in combinations (4 h or 24 h). The relative abundance of Kiss and Rfrp-3 and their receptor mRNA transcripts, as well as the KISS and RFRP-3 proteins, were found in the pituitaries of estrous-cyclic and early pregnant pigs. KISS after 4 h increased the secretion of FSH in estrous cyclic pigs mostly during the early-luteal phase and luteolysis. RFRP-3 inhibited the synthesis and secretion of FSH in estrous-cyclic pigs on days 19 to 20 and the secretion of FSH on days 2 to 3 and 10 to 12 of the estrous cycle compared with GnRH-treated cells. KISS in co-treatment with GnRH after 24 h enhanced FSH release on days 2 to 3 and 15 to 16 of the estrous cycle. In conclusion, KISS and RFRP-3 systems are present in the pituitary of estrous-cyclic and pregnant pigs. In estrous-cyclic pigs, KISS and RFRP-3 may affect the synthesis and secretion of FSH by pituitary cells.
Collapse
Affiliation(s)
- Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland.
| | - Wioleta Czelejewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Ewa M Drzewiecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| |
Collapse
|