1
|
Ashrafzadeh A, Yajit NLM, Nathan S, Othman I, Karsani SA. Comprehensive Study of Sperm Proteins and Metabolites Potentially Associated with Higher Fertility of Zebu Cattle ( Bos indicus) in Tropical Areas. J Proteome Res 2024. [PMID: 39591502 DOI: 10.1021/acs.jproteome.4c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Crossbreeding of zebu cattle (Bos indicus) with European breeds (Bos taurus) producing crossbred cattle was performed to overcome the low growth rates and milk production of indigenous tropical cattle breeds. However, zebu cattle fertility is higher than those of crossbred cattle and European breeds under warm conditions. Combination study of proteomics and metabolomics toward Malaysian indigenous breed Kedah × Kelantan-KK (B. indicus) and crossbreed Mafriwal-M (B. taurus × B. indicus) to understand physiological reasons for higher thermotolerance and fertility in Zebu cattle sperm. 161 regulated metabolites and 96 regulated proteins in KK and M (p < 0.05) showed more efficient carbohydrate and energy metabolism, higher integrity of the DNA and plasma membrane, a lower level of reactive oxygen species, and higher levels of phospholipids, which confirmed higher sperm plasma membrane integrity in KK. A stronger antioxidant system and lower polyunsaturated fatty acids help KK sperm cope with oxidative stress under warm conditions. The higher abundance of flagella structural proteins in KK provides a stronger structure that supports sperm motility. Abnormality of flagella, plasma membrane disruption, and DNA fragmentation were higher in M. These findings provide selective molecular markers for developing high-producing and more thermotolerant cattle breeds in tropical areas (197 words).
Collapse
Affiliation(s)
- Ali Ashrafzadeh
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Agilent Technologies, Inc, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Noor Liana Mat Yajit
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Sunway Campus, 47500 Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Carrillo-Gonzalez DF, Hernández-Herrera DY, Medina-Montes AF, Otero-Arroyo R. Effect of the addition of IGF-1 during in vitro culture on the embryonic development speed from different crossbreed bovine embryos. Trop Anim Health Prod 2024; 56:368. [PMID: 39476264 DOI: 10.1007/s11250-024-04204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
Supplementation with insulin-like growth factor type 1 (IGF-1) during in vitro culture of bovine embryos has yielded mixed results, likely due to genetic variability among embryos. This work aimed to evaluate the effect of IGF-1 at two concentrations on the development speed embryos from primary F1 crossbreeds used in dual-purpose cattle farming in the Colombian low tropics. Specifically, we investigated the influence of IGF-1 and embryo breed on the blastocyst formation rate. Oocytes were sourced from non-pregnant cows: Bos taurus indicus (20 Brahman and 14 Gyr) and Bos taurus taurus (12 Holstein and 28 Romosinuano). Oocytes were fertilized with semen from specific bulls (Recoil for Holstein, Gabinete for Gyr, and UBER POI 1490 for Brahman). The resulting embryos from each crossbreed group were randomly distributed in three different cultured media with 50 ng/mL IGF-1, 100 ng/mL IGF-1, or no IGF-1 (control) for 7 days. Results showed that 50 ng/mL IGF-1 significantly increased embryo production by day 6 (25.9%±14.56%) compared to control (20.5%±11.84%) and 100 ng/mL IGF-1 (23.0%±9.54%) (p < 0.05). By day 7, both 50 ng/mL (42.6%±26.55%) and 100 ng/mL (49.7%±21.98%) IGF-1 groups exhibited significantly higher production rates compared to the control group (p < 0.001). The embryo breed also influenced development, with Gyr-Holstein (GxH) crossbreeds showing the highest production rates (p < 0.001). In conclusion, IGF-1 supplementation enhances in vitro embryo production, with the effect influenced by both breed and IGF-1 concentration. These findings suggest that breed-specific optimization of IGF-1 conditions is necessary to maximize embryonic development outcomes.
Collapse
Affiliation(s)
- Diego F Carrillo-Gonzalez
- Departamento de Zootecnia, Facultad de Ciencias Agropecuarias, Grupo de Investigación One Health and Veterinary Innovative Research and Development, Universidad de Sucre, Sincelejo, Sucre, Colombia.
| | - Darwin Y Hernández-Herrera
- Departamento de Ciencia Animal, Facultad de Ciencias Agropecuarias, Grupo de Investigación en Recursos Zoogenéticos, Universidad Nacional de Colombia, Palmira, Valle del Cauca, Colombia
| | - Adrian F Medina-Montes
- Departamento de Zootecnia, Facultad de Ciencias Agropecuarias, Grupo de Investigación en Reproducción y Mejoramiento Genético Animal, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - Rafael Otero-Arroyo
- Departamento de Zootecnia, Facultad de Ciencias Agropecuarias, Grupo de Investigación en Reproducción y Mejoramiento Genético Animal, Universidad de Sucre, Sincelejo, Sucre, Colombia
| |
Collapse
|
3
|
Rebez EB, Sejian V, Silpa MV, Kalaignazhal G, Thirunavukkarasu D, Devaraj C, Nikhil KT, Ninan J, Sahoo A, Lacetera N, Dunshea FR. Applications of Artificial Intelligence for Heat Stress Management in Ruminant Livestock. SENSORS (BASEL, SWITZERLAND) 2024; 24:5890. [PMID: 39338635 PMCID: PMC11435989 DOI: 10.3390/s24185890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Heat stress impacts ruminant livestock production on varied levels in this alarming climate breakdown scenario. The drastic effects of the global climate change-associated heat stress in ruminant livestock demands constructive evaluation of animal performance bordering on effective monitoring systems. In this climate-smart digital age, adoption of advanced and developing Artificial Intelligence (AI) technologies is gaining traction for efficient heat stress management. AI has widely penetrated the climate sensitive ruminant livestock sector due to its promising and plausible scope in assessing production risks and the climate resilience of ruminant livestock. Significant improvement has been achieved alongside the adoption of novel AI algorithms to evaluate the performance of ruminant livestock. These AI-powered tools have the robustness and competence to expand the evaluation of animal performance and help in minimising the production losses associated with heat stress in ruminant livestock. Advanced heat stress management through automated monitoring of heat stress in ruminant livestock based on behaviour, physiology and animal health responses have been widely accepted due to the evolution of technologies like machine learning (ML), neural networks and deep learning (DL). The AI-enabled tools involving automated data collection, pre-processing, data wrangling, development of appropriate algorithms, and deployment of models assist the livestock producers in decision-making based on real-time monitoring and act as early-stage warning systems to forecast disease dynamics based on prediction models. Due to the convincing performance, precision, and accuracy of AI models, the climate-smart livestock production imbibes AI technologies for scaled use in the successful reducing of heat stress in ruminant livestock, thereby ensuring sustainable livestock production and safeguarding the global economy.
Collapse
Affiliation(s)
- Ebenezer Binuni Rebez
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India
| | - Veerasamy Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India
| | | | - Gajendirane Kalaignazhal
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, India
| | - Duraisamy Thirunavukkarasu
- Department of Veterinary and Animal Husbandry Extension Education, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637002, India
| | - Chinnasamy Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India
| | - Kumar Tej Nikhil
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India
| | - Jacob Ninan
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India
| | - Artabandhu Sahoo
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India
| | - Nicola Lacetera
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| |
Collapse
|
4
|
Laporta J, Khatib H, Zachut M. Review: Phenotypic and molecular evidence of inter- and trans-generational effects of heat stress in livestock mammals and humans. Animal 2024; 18 Suppl 2:101121. [PMID: 38531705 DOI: 10.1016/j.animal.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Internal and external factors can change an individual's phenotype. A significant external threat to humans and livestock is environmental heat load, a combination of high ambient temperatures and humidity. A heat stress response occurs when an endothermal animal is exposed to a heat load that challenges its' thermoregulation capacity. With the ongoing climate change trends, the incidence of chronically elevated temperatures causing heat stress is expected to rise, posing an even greater risk to the health and survival of all species. Heat stress is generally related to adverse effects on food intake, health, and performance in mammal livestock species and humans. Evidence from epidemiological and experimental studies of humans and livestock demonstrated that exposing pregnant females to heat stress affects the phenotype of the newborn in various ways. For instance, in utero heat stress is related to lower BW at birth and changes in metabolic and immune functions in the newborn. In cows, the effects of heat stress on the performance of the offspring last for three or four generations, suggesting intergenerational effects. The molecular mechanism orchestrating these effects of heat stress may be epigenetic regulation, as various epigenetic mechanisms control genome reprogramming. Epigenetic modifications are attached to DNA and histone proteins and can influence how specific genes are expressed, resulting in phenotypic changes. Epigenetic modifications can be triggered in response to environmental heat stress without altering the DNA sequence. Heat stress insults during critical periods of organ development (i.e., fetal exposure) can trigger epigenetic modifications that impact health and productivity across generations. Thus, epigenetic changes caused by extreme temperatures can be passed down to the offspring if the mother is exposed to the insult during pregnancy. Understanding the phenotypic and molecular consequences of maternal heat stress, including the carry-over lingering effects on the resulting progeny, is necessary to develop effective mitigation strategies and gain translational knowledge about the fundamental processes leading to intergenerational and transgenerational inheritance. This review examines the phenotypic and molecular evidence of how maternal exposure to extreme heat can affect future generations in several species, including humans, swine, sheep, goats, and cattle. The current knowledge of the molecular mechanisms involved in intergenerational and transgenerational epigenetic inheritance will also be presented and discussed.
Collapse
Affiliation(s)
- J Laporta
- Department of Animal and Dairy Sciences, The University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - H Khatib
- Department of Animal and Dairy Sciences, The University of Wisconsin-Madison, Madison, WI 53705, USA
| | - M Zachut
- Department of Ruminant Science, Institute of Animal Science, Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
5
|
Sajjanar B, Aalam MT, Khan O, Dhara SK, Ghosh J, Gandham RK, Gupta PK, Chaudhuri P, Dutt T, Singh G, Mishra BP. Genome-wide DNA methylation profiles regulate distinct heat stress response in zebu (Bos indicus) and crossbred (Bos indicus × Bos taurus) cattle. Cell Stress Chaperones 2024; 29:603-614. [PMID: 38936463 PMCID: PMC11264184 DOI: 10.1016/j.cstres.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Epigenetic variations result from long-term adaptation to environmental factors. The Bos indicus (zebu) adapted to tropical conditions, whereas Bos taurus adapted to temperate conditions; hence native zebu cattle and its crossbred (B indicus × B taurus) show differences in responses to heat stress. The present study evaluated genome-wide DNA methylation profiles of these two breeds of cattle that may explain distinct heat stress responses. Physiological responses to heat stress and estimated values of Iberia heat tolerance coefficient and Benezra's coefficient of adaptability revealed better relative thermotolerance of Hariana compared to the Vrindavani cattle. Genome-wide DNA methylation patterns were different for Hariana and Vrindavani cattle. The comparison between breeds indicated the presence of 4599 significant differentially methylated CpGs with 756 hypermethylated and 3845 hypomethylated in Hariana compared to the Vrindavani cattle. Further, we found 79 genes that showed both differential methylation and differential expression that are involved in cellular stress response functions. Differential methylations in the microRNA coding sequences also revealed their functions in heat stress responses. Taken together, epigenetic differences represent the potential regulation of long-term adaptation of Hariana (B indicus) cattle to the tropical environment and relative thermotolerance.
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; ICAR-Indian Veterinary Research Institute, Bengaluru Campus, Bengaluru, Karnataka, India.
| | - Mohd Tanzeel Aalam
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Owais Khan
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sujoy K Dhara
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyotirmoy Ghosh
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, India
| | - Ravi Kumar Gandham
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Praveen K Gupta
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Pallab Chaudhuri
- ICAR-Indian Veterinary Research Institute, Bengaluru Campus, Bengaluru, Karnataka, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Gyanendra Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | | |
Collapse
|
6
|
Lin L, Guo K, Ma H, Zhang J, Lai Z, Zhu W, Mao S. Effects of grain intervention on hypothalamic function and the metabolome of blood and milk in dairy cows. J Anim Sci Biotechnol 2024; 15:71. [PMID: 38822422 PMCID: PMC11143652 DOI: 10.1186/s40104-024-01034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/14/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The hypothalamus plays a crucial role in the health and productivity of dairy cows, yet studies on its functionality and its impact on peripheral circulation in these animals are relatively scarce, particularly regarding dietary interventions. Therefore, our study undertook a comprehensive analysis, incorporating both metabolomics and transcriptomics, to explore the effects of a grain-based diet on the functionality of the hypothalamus, as well as on blood and milk in dairy cows. RESULTS The hypothalamic metabolome analysis revealed a significant reduction in prostaglandin E2 (PGE2) level as a prominent response to the grain-based diet introduction. Furthermore, the hypothalamic transcriptome profiling showed a notable upregulation in amino acid metabolism due to the grain-based diet. Conversely, the grain-based diet led to the downregulation of genes involved in the metabolic pathway from lecithin to PGE2, including phospholipase A2 (PLA2G4E, PLA2G2A, and PLA2G12B), cyclooxygenase-2 (COX2), and prostaglandin E synthase (PTGES). Additionally, the plasma metabolome analysis indicated a substantial decrease in the level of PGE2, along with a decline in adrenal steroid hormones (tetrahydrocortisol and pregnenolone) following the grain-based diet introduction. Analysis of the milk metabolome showed that the grain-based diet significantly increased uric acid level while notably decreasing PGE2 level. Importantly, PGE2 was identified as a critical metabolic marker in the hypothalamus, blood, and milk in response to grain intervention. Correlation analysis demonstrated a significant correlation among metabolic alterations in the hypothalamus, blood, and milk following the grain-based diet. CONCLUSIONS Our findings suggest a potential link between hypothalamic changes and alterations in peripheral circulation resulting from the introduction of a grain-based diet.
Collapse
Affiliation(s)
- Limei Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaizhen Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huiting Ma
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiyou Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Lai
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Feng X, Li C, Zhang H, Zhang P, Shahzad M, Du W, Zhao X. Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience. Int J Mol Sci 2024; 25:4808. [PMID: 38732033 PMCID: PMC11084174 DOI: 10.3390/ijms25094808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
- College of Animal Science and Technology, Qingdao Agricultural University (QAU), Qingdao 266000, China
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Muhammad Shahzad
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| |
Collapse
|
8
|
Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in Genetic Biomarkers and Exogenous Antioxidant Supplementation for Safeguarding Mammalian Cells against Heat-Induced Oxidative Stress and Apoptosis. Antioxidants (Basel) 2024; 13:258. [PMID: 38539792 PMCID: PMC10967571 DOI: 10.3390/antiox13030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 11/11/2024] Open
Abstract
Heat stress represents a pervasive global concern with far-reaching implications for the reproductive efficiency of both animal and human populations. An extensive body of published research on heat stress effects utilizes controlled experimental environments to expose cells and tissues to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall competence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised oocyte development, and even infertility across diverse species. One of the primary mechanisms underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS) levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive cells possess inherent self-protective mechanisms that come into play during episodes of heat stress, aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Additionally, we provide a succinct overview of potential antioxidant interventions and highlight the genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively offering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
9
|
Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel) 2023; 13:1846. [PMID: 37889768 PMCID: PMC10252019 DOI: 10.3390/ani13111846] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Global warming is a significant threat to the sustainability and profitability of the dairy sector, not only in tropical or subtropical regions but also in temperate zones where extreme summer temperatures have become a new and challenging reality. Prolonged exposure of dairy cows to high temperatures compromises animal welfare, increases morbidity, and suppresses fertility, resulting in devastating economic losses for farmers. To counteract the deleterious effects of heat stress, cattl e employ various adaptive thermoregulatory mechanisms including molecular, endocrine, physiological, and behavioral responses. These adaptations involve the immediate secretion of heat shock proteins and cortisol, followed by a complex network of disrupted secretion of metabolic and reproductive hormones such as prolactin, ghrelin, ovarian steroid, and pituitary gonadotrophins. While the strategic heat stress mitigation measures can restore milk production through modifications of the microclimate and nutritional interventions, the summer fertility records remain at low levels compared to those of the thermoneutral periods of the year. This is because sustainment of high fertility is a multifaceted process that requires appropriate energy balance, undisrupted mode of various hormones secretion to sustain the maturation and fertilizing competence of the oocyte, the normal development of the early embryo and unhampered maternal-embryo crosstalk. In this review, we summarize the major molecular and endocrine responses to elevated temperatures in dairy cows, as well as the impacts on maturing oocytes and early embryos, and discuss the consequences that heat stress brings about in dairy cattle fertility.
Collapse
Affiliation(s)
- Eleni Dovolou
- Laboratory of Reproduction, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Themistoklis Giannoulis
- Laboratory of Genetics, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
| | - Ioannis Nanas
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Georgios S. Amiridis
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
10
|
Cojkic A, Morrell JM. Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria. Animals (Basel) 2023; 13:ani13050942. [PMID: 36899799 PMCID: PMC10000089 DOI: 10.3390/ani13050942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Animal welfare is a complex subject; as such, it requires a multidimensional approach with the main aim of providing the animals with the "five freedoms". The violations of any one of these freedoms could have an influence on animal wellbeing on different levels. Over the years, many welfare quality protocols were developed in the EU thanks to the Welfare Quality® project. Unfortunately, there is a lack of such summarized information about bull welfare assessment in artificial insemination stations or about how disturbed welfare can be reflected in their productivity. Animal reproduction is the basis for the production of meat and milk; therefore, factors contributing to reduced fertility in bulls are not only indicators of animal welfare but also have implications for human health and the environment. Optimizing the reproductive efficiency of bulls at an early age can help to reduce greenhouse gas emissions. In this review, welfare quality assessment will be evaluated for these production animals using reproduction efficiency as a key area, focusing on stress as a main effect of poor animal welfare and, thereby, reduced fertility. We will address various welfare aspects and possible changes in resources or management to improve outcomes.
Collapse
|
11
|
Barrera SS, Naranjo-Gomez JS, Rondón-Barragán IS. Thermoprotective molecules: Effect of insulin-like growth factor type I (IGF-1) in cattle oocytes exposed to high temperatures. Heliyon 2023; 9:e14375. [PMID: 36967889 PMCID: PMC10036656 DOI: 10.1016/j.heliyon.2023.e14375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The adverse effects of heat stress (HS) on the welfare and productivity of cattle are the result of the associated hyperthermia and the physiological and behavioral mechanisms performed by the animal to regulate body temperature. The negative effects of HS on in vitro oocyte maturation and in vitro bovine embryo production have been reported; being one of the major concerns due to economic and productive losses, and several mechanisms have been implemented to reduce its impact. These mechanisms include supplementation of the medium with hormones, adjuvants, identification of protective genes, among others. This review aims to explore the cellular and molecular mechanisms of insulin-like growth factor-1 (IGF-1) during in vitro and in vivo maturation of bovine oocytes and its thermoprotective effect under HS. Although the supplementation of the culture medium during oocyte maturation with IGF-1 has been implemented during the last years, there are still controversial results, however, supplementation with low concentration showed a positive effect on maturation and thermoprotection of oocytes exposed to higher temperatures. Additionally, IGF-1 is involved in multiple cellular pathways, and it may regulate cell apoptosis in cases of HS and protect oocyte competence under in vitro conditions.
Collapse
|
12
|
Wathes DC. Developmental Programming of Fertility in Cattle-Is It a Cause for Concern? Animals (Basel) 2022; 12:2654. [PMID: 36230395 PMCID: PMC9558991 DOI: 10.3390/ani12192654] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle fertility remains sub-optimal despite recent improvements in genetic selection. The extent to which an individual heifer fulfils her genetic potential can be influenced by fetal programming during pregnancy. This paper reviews the evidence that a dam's age, milk yield, health, nutrition and environment during pregnancy may programme permanent structural and physiological modifications in the fetus. These can alter the morphology and body composition of the calf, postnatal growth rates, organ structure, metabolic function, endocrine function and immunity. Potentially important organs which can be affected include the ovaries, liver, pancreas, lungs, spleen and thymus. Insulin/glucose homeostasis, the somatotropic axis and the hypothalamo-pituitary-adrenal axis can all be permanently reprogrammed by the pre-natal environment. These changes may act directly at the level of the ovary to influence fertility, but most actions are indirect. For example, calf health, the timing of puberty, the age and body structure at first calving, and the ability to balance milk production with metabolic health and fertility after calving can all have an impact on reproductive potential. Definitive experiments to quantify the extent to which any of these effects do alter fertility are particularly challenging in cattle, as individual animals and their management are both very variable and lifetime fertility takes many years to assess. Nevertheless, the evidence is compelling that the fertility of some animals is compromised by events happening before they are born. Calf phenotype at birth and their conception data as a nulliparous heifer should therefore both be assessed to avoid such animals being used as herd replacements.
Collapse
Affiliation(s)
- D Claire Wathes
- Department for Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
13
|
Effects of short-term in vitro heat stress on bovine preantral follicles. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Barcelos SDS, Nascimento KB, da Silva TE, Mezzomo R, Alves KS, de Souza Duarte M, Gionbelli MP. The Effects of Prenatal Diet on Calf Performance and Perspectives for Fetal Programming Studies: A Meta-Analytical Investigation. Animals (Basel) 2022; 12:2145. [PMID: 36009734 PMCID: PMC9404886 DOI: 10.3390/ani12162145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
This meta-analysis aimed to identify knowledge gaps in the scientific literature on future fetal-programming studies and to investigate the factors that determine the performance of beef cows and their offspring. A dataset composed of 35 publications was used. The prenatal diet, body weight (BW), average daily gain (ADG) during pregnancy, and calf sex were elicited as possible modulators of the beef cows and their offspring performance. Then, the correlations between these variables and the outcomes of interest were investigated. A mixed multiple linear regression procedure was used to evaluate the relationships between the responses and all the possible explanatory variables. A knowledge gap was observed in studies focused on zebu animals, with respect to the offspring sex and the consequences of prenatal nutrition in early pregnancy. The absence of studies considering the possible effects promoted by the interactions between the different stressors' sources during pregnancy was also detected. A regression analysis showed that prenatal diets with higher levels of protein improved the ADG of pregnant beef cows and that heavier cows give birth to heavier calves. Variations in the BW at weaning were related to the BW at birth and calf sex. Therefore, this research reinforces the importance of monitoring the prenatal nutrition of beef cows.
Collapse
Affiliation(s)
- Sandra de Sousa Barcelos
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | | | - Tadeu Eder da Silva
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rafael Mezzomo
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | - Kaliandra Souza Alves
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | | | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil
| |
Collapse
|
15
|
Ghaffari MH. Developmental programming: prenatal and postnatal consequences of hyperthermia in dairy cows and calves. Domest Anim Endocrinol 2022; 80:106723. [PMID: 35339732 DOI: 10.1016/j.domaniend.2022.106723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
With global warming, the incidence of heat stress in dairy cows is increasing in many countries. Temperatures outside the thermoneutral zone (heat stress) are one of the environmental factors with the greatest impact on milk production and reproductive performance of dairy cows. In addition to several biological mechanisms that may contribute to the effects of fetal programming, epigenetic modifications have also been investigated as possible mediators of the observed associations between maternal heat stress during late gestation and performance and health later in life. In utero programming of these offspring may coordinate changes in thermoregulation, mammary gland development, and milk production ability at different developmental stages. This review examines the effects of prenatal and postnatal hyperthermia on the developmental outcomes of dairy cows, as well as the physiological and molecular mechanisms that may be responsible for the negative phenotypic consequences of heat stress that persist throughout the neonatal and adult periods and may have multigenerational implications. The physiological and molecular mechanisms underlying the negative phenotypic consequences of heat stress are discussed. Research challenges in this area, future research recommendations, and therapeutic applications are also discussed. In summary, strategies to reduce heat stress during the dry period should consider not only the productivity of the pregnant cow but also the well-being of the newborn calf.
Collapse
|
16
|
Rosenberg T, Marco A, Kisliouk T, Haron A, Shinder D, Druyan S, Meiri N. Embryonic heat conditioning in chicks induces transgenerational heat/immunological resilience via methylation on regulatory elements. FASEB J 2022; 36:e22406. [PMID: 35713935 DOI: 10.1096/fj.202101948r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
The question of whether behavioral traits are heritable is under debate. An obstacle in demonstrating transgenerational inheritance in mammals originates from the maternal environment's effect on offspring phenotype. Here, we used in ovo embryonic heat conditioning (EHC) of first-generation chicks, demonstrating heredity of both heat and immunological resilience, confirmed by a reduced fibril response in their untreated offspring to either heat or LPS challenge. Concordantly, transcriptome analysis confirmed that EHC induces changes in gene expression in the anterior preoptic hypothalamus (APH) that contribute to these phenotypes in the offspring. To study the association between epigenetic mechanisms and trait heritability, DNA-methylation patterns in the APH of offspring of control versus EHC fathers were evaluated. Genome-wide analysis revealed thousands of differentially methylated sites (DMSs), which were highly enriched in enhancers and CCCTC-binding factor (CTCF) sites. Overlap analysis revealed 110 differentially expressed genes that were associated with altered methylation, predominantly on enhancers. Gene-ontology analysis shows pathways associated with immune response, chaperone-mediated protein folding, and stress response. For the proof of concept, we focused on HSP25 and SOCS3, modulators of heat and immune responses, respectively. Chromosome conformational capture (3C) assay identified interactions between their promoters and methylated enhancers, with the strongest frequency on CTCF binding sites. Furthermore, gene expression corresponded with the differential methylation patterns, and presented increased CTCF binding in both hyper- and hypomethylated DMSs. Collectively, we demonstrate that EHC induces transgenerational thermal and immunological resilience traits. We propose that one of the mechanisms underlying inheritance depends on three-dimensional (3D) chromatin reorganization.
Collapse
Affiliation(s)
- Tali Rosenberg
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Asaf Marco
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Amit Haron
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dmitry Shinder
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
17
|
Quail LK, Randel RD, Welsh TH, Cushman RA, Yake HK, Branco RADO, Neuendorff DA, Long CR, Perry GA. Prenatal transportation stress did not impact ovarian follicle count for three generations of female Brahman offspring. Anim Reprod Sci 2022; 243:107016. [PMID: 35714399 DOI: 10.1016/j.anireprosci.2022.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
As prenatal transportation stress altered behavior and adrenal glucocorticoid secretion of calves, we hypothesized that prenatal transportation stress would decrease ovarian reserve size and negatively impact female offspring fertility. The impact of prenatal transportation stress on ovarian follicle numbers in female offspring for three generations was studied. Brahman cows were transported for 2 h on day 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 of gestation. Ovaries were collected from offspring of transported or non-transported dams at multiple ages. Primordial, primary, secondary, and antral follicles were histologically analyzed. Antral follicle numbers were determined by ultrasound in a subset of offspring. Numbers of primordial, primary, secondary, and antral follicles were analyzed using the MIXED procedure, while the CORR procedure of SAS was used to determine the correlation between follicles observed by ultrasonography and histology. There were no differences (P > 0.05) in the number of primordial, primary, secondary, antral, or total follicles observed histologically due to treatment. Younger females had significantly greater numbers of follicles than older females (P < 0.0001). Antral follicles tended to be correlated with total histological ovarian follicles (P = 0.10). There was no difference in the number of antral follicles observed at ultrasound due to treatment (P = 0.3147), or generation (P = 0.6005) when controlling for age at observation. These results show that short-term transportation stress during early- to mid-gestation did not impact fertility as measured by ovarian follicle numbers in female Brahman offspring for three generations.
Collapse
Affiliation(s)
- Lacey K Quail
- Texas A&M AgriLife Research, Overton, TX 75684, United States; Texas A&M University, College Station, TX 77843, United States
| | - Ronald D Randel
- Texas A&M AgriLife Research, Overton, TX 75684, United States
| | - Thomas H Welsh
- Texas A&M University, College Station, TX 77843, United States
| | - Robert A Cushman
- USDA-ARS, Meat Animal Research Center, Clay Center, NE 68933, United States
| | - Hannah K Yake
- USDA-ARS, Meat Animal Research Center, Clay Center, NE 68933, United States
| | | | | | - Charles R Long
- Texas A&M AgriLife Research, Overton, TX 75684, United States
| | - George A Perry
- Texas A&M AgriLife Research, Overton, TX 75684, United States.
| |
Collapse
|
18
|
Barcarolo D, Angeli E, Ribas L, Addona S, Ortega H, Hein G. Application of an optimized and validated LC–MS/MS method for the quantification of free 3-nitrotyrosine in plasma, urine and liver tissue of lactating dairy cows. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Expression of candidate genes for residual feed intake in tropically adapted Bos taurus and Bos indicus bulls under thermoneutral and heat stress environmental conditions. J Therm Biol 2021; 99:102998. [PMID: 34420630 DOI: 10.1016/j.jtherbio.2021.102998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
The objectives of this study were to measure the relative expression of the ATP1A1, NR3C1, POMC, NPY, and LEP genes in Caracu (Bos taurus) and Nelore (Bos indicus) bulls submitted to feed efficiency tests at high environmental temperatures, and to evaluate differences in adaptability to tropical conditions between breeds. Thirty-five Caracu and 30 Nelore bulls were submitted to a feed efficiency test using automated feeding stations. At the end of the test, the animals were subjected to thermoneutral (TN) and heat stress (HS) conditions. Blood samples were collected after the exposure to the TN and HS conditions and the relative expression of genes was measured by qPCR. The bulls exhibited lower expression of ATP1A1 in the HS condition than in the TN condition (1.98 ± 0.27 and 2.86 ± 0.26, P = 0.02), while the relative expression of NR3C1, POMC, and LEP did not differ (P > 0.05) between climatic conditions. The breed and feed intake influenced NPY and LEP expression levels (P < 0.05). Different climate conditions associated with residual feed intake can modify the gene expression patterns of ATP1A1 and NPY. The association observed among all genes studied shows that they are involved in appetite control. Bos taurus and Bos indicus bulls exhibited similar adaptability to tropical climate conditions.
Collapse
|
20
|
Laporta J. ADSA Foundation Scholar Award: Early-life exposure to hyperthermia: Productive and physiological outcomes, costs, and opportunities. J Dairy Sci 2021; 104:11337-11347. [PMID: 34419283 DOI: 10.3168/jds.2021-20722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Global rising temperature is a considerable threat to livestock production and an impediment to animal welfare. In fact, the 5 warmest years on record have occurred since 2016. Although the effect of heat stress on lactating cattle is well recognized and extensively studied, it is increasingly evident that rising temperatures will affect dairy cattle of all ages and lactation states. However, the extent and consequences of this effect are less understood and often overlooked in the literature and dairy industry. Early-life experiences, such as exposure to hyperthermia, can have life-long implications for health and productivity. This review highlights the body of work surrounding the effects of heat-stress exposure in young dairy cattle, including the prenatal fetus (in utero), postnatal calves (preweaning), and growing heifers, which are all categories that are typically not considered for heat-stress abatement on farm. Insights into the physiological and molecular mechanisms that might explain the adverse phenotypic outcomes of heat-stress exposure at different stages of development are also discussed. The estimated economic loss of in utero hyperthermia is addressed, and the ties between biological findings and opportunities for the application of cooling management interventions on farm are also presented. Our research highlights the importance of heat-stress abatement strategies for dry-pregnant cows to ensure optimal multigenerational productivity and showcases the benefits of cooling neonatal calves and growing heifers. Understanding the implications of heat stress at all life stages from a physiological, molecular, economic, and welfare perspective will lead to the development of novel and refined practices and interventions to help overcome the long-lasting effects of climate change in the dairy industry.
Collapse
Affiliation(s)
- Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706.
| |
Collapse
|
21
|
Turner N, Abeysinghe P, Sadowski P, Mitchell MD. Exosomal Cargo May Hold the Key to Improving Reproductive Outcomes in Dairy Cows. Int J Mol Sci 2021; 22:ijms22042024. [PMID: 33670752 PMCID: PMC7922264 DOI: 10.3390/ijms22042024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
The reproductive status of dairy cows remains a challenge for dairy farmers worldwide, with impaired fertility linked to a significant reduction in herd profitability, due in part to impaired immunity, increased metabolic pressure, and longer postpartum anestrous interval (PPAI). Exosomes are nanovesicles released from a variety of cell types and end up in circulation, and carry proteins, bioactive peptides, lipids, and nucleic acids specific to the place of origin. As such, their role in health and disease has been investigated in humans and animals. This review discusses research into exosomes in the context of reproduction in dairy herds and introduces recent advances in mass-spectrometry (MS) based proteomics that have a potential to advance quantitative profiling of exosomal protein cargo in a search for early biomarkers of cattle fertility.
Collapse
Affiliation(s)
- Natalie Turner
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
| | - Pevindu Abeysinghe
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
| | - Pawel Sadowski
- Central Analytical Research Facility—Queensland University of Technology, Gardens Point, Brisbane, QLD 4000, Australia;
| | - Murray D. Mitchell
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
- Correspondence: ; Tel.: +61-7-3069-7438
| |
Collapse
|