Morton AJ, Candelaria JI, McDonnell SP, Zgodzay DP, Denicol AC. Review: Roles of follicle-stimulating hormone in preantral folliculogenesis of domestic animals: what can we learn from model species and where do we go from here?
Animal 2023;
17 Suppl 1:100743. [PMID:
37567683 DOI:
10.1016/j.animal.2023.100743]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 08/13/2023] Open
Abstract
The pituitary gonadotropin FSH is a glycoprotein critical for the development of ovarian follicles. Upon binding to its G protein-coupled membrane receptor located on the granulosa cells of ovarian follicles, FSH elicits a cascade of downstream intracellular responses to promote follicle growth, maturation and steroidogenic activity, leading to the acquisition of meiotic and developmental competence of the enclosed oocyte. The essential role of FSH for proper antral follicle development and fertility is indisputable; over the decades, increasing evidence has also pointed toward survival and growth-promoting effects elicited by FSH in earlier-stage preantral follicles, deeming these follicles FSH-responsive as opposed to the FSH-dependent antral follicles. Transgenic mouse models lacking GnRH1, Fshβ or Fshr clearly demonstrate this difference by showing that, morphologically, preantral follicles develop to the secondary stage without FSH signaling; however, exogenous expression or administration of FSH to hormone-deficient mice promotes preantral follicle development, with more pronounced effects seen in earlier stages (i.e., primary follicles). In hypophysectomized sheep, FSH administration also promotes the growth of primary-stage preantral follicles. However, in vivo studies in this area are more challenging to perform in domestic animals compared to rodents, and therefore most of the research to date has been done in vitro. Here, we present the existing evidence for a role of FSH in regulating the growth and survival of preantral follicles from data generated in rodents and domestic animals. We provide an overview of the process of folliculogenesis, FSH synthesis and cellular signaling, and the response to FSH by preantral follicles in vivo and in vitro, as well as interactions between FSH and other molecules to regulate preantral folliculogenesis. The widespread use of FSH in ovarian stimulation programs for assisted reproduction creates a real need for a better understanding of the effects of FSH beyond stimulation of antral follicle growth, and more research in this area could lead to the development of more effective fertility programs. In addition to its importance as an agricultural species, the cow provides a desirable model for humans regarding ovarian stimulation due to similar timing of folliculogenesis and follicle size, as well as similar ovarian architecture. The refinement of minimally invasive methods to allow the study of preantral folliculogenesis in live animals will be critical to understand the short- and long-term effects of FSH in ovarian folliculogenesis.
Collapse