1
|
Paitoon P, Sartsook A, Thongkham M, Sathanawongs A, Lumsangkul C, Pattanawong W, Hongsibsong S, Sringarm K. Sperm quality variables of sex-sorted bull semen produced by magnetic-activated cell sorting coupled with recombinant antibodies targeting Y-chromosome-bearing sperm. Theriogenology 2024; 219:11-21. [PMID: 38377714 DOI: 10.1016/j.theriogenology.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The immunological sexing method using antibodies offers cost-effective, high-volume production but faces challenges in terms of X-sperm purity in sexed semen. This research aimed to produce sexed bull semen using highly specific recombinant antibodies in magnetic-activated cell sorting (MACS), evaluate sperm quality and kinematic parameters, and verify the sex ratio of sperm, embryos, and live calves. Fresh semen from two Angus bulls was separated into two equal groups: conventional (CONV) semen and semen sexed using MACS with Y-scFv antibody conjugation to separate two fractions, i.e., the X-enriched and Y-enriched fractions. Then, computer assisted semen analysis and imaging flow cytometry were used to evaluate sperm motility and kinematic variables, acrosomal integrity, sperm viability, and sperm sex ratios. The results showed that sperm motility and quality did not differ between X-enriched and CONV semen. However, the Y-enriched fraction showed significantly lower sperm quality than the X-enriched fraction and CONV semen. The sperm ratio revealed that X-sperm accounted for up to 79.50% of the X-enriched fraction, while Y-sperm accounted for up to 78.56% of the Y-enriched fraction. The sex ratio of embryos was examined using in vitro fertilization. The cleavage rates using CONV and X-enriched semen were significantly higher than that using Y-enriched semen. Accordingly, 88.26% female blastocysts were obtained by using X-enriched semen, and 83.58% male blastocysts were obtained by using Y-enriched semen. In farm trials, 304 cows were subjected to AI using X-enriched and CONV semen. The pregnancy rate did not differ between the X-enriched and CONV semen groups. On the other hand, X-enriched semen generated significantly more live female calves (83.64%) than CONV semen (47.00%). The MACS sexing method significantly enhanced the X-sperm purity in sexed semen, producing high-quality sperm, a high percentage of female blastocytes, and a high percentage of live female calves.
Collapse
Affiliation(s)
- Phanuwit Paitoon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apinya Sartsook
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anucha Sathanawongs
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wiwat Pattanawong
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai, 50290, Thailand
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Zhu Z, Li W, Yang Q, Zhao H, Zhang W, Adetunji AO, Hoque SAM, Kou X, Min L. Pyrroloquinoline Quinone Improves Ram Sperm Quality through Its Antioxidative Ability during Storage at 4 °C. Antioxidants (Basel) 2024; 13:104. [PMID: 38247528 PMCID: PMC10812569 DOI: 10.3390/antiox13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Sperm motility is an important factor in the migration of sperm from the uterus to the oviduct. During sperm preservation in vitro, sperm generates excessive ROS that damages its function. This study aims to investigate whether the addition of pyrroloquinoline quinone (PQQ) to the diluted medium could improve chilled ram sperm quality, and then elucidates the mechanism. Ram semen was diluted with Tris-citric acid-glucose (TCG) medium containing different doses of PQQ (0 nM, 10 nM, 100 nM, 1000 nM, 10,000 nM), and stored at 4 °C. Sperm motility patterns, plasma membrane integrity, acrosome integrity, mitochondrial membrane potential, reactive oxygen species (ROS) levels, malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, and ATP levels were measured after preservation. Furthermore, the expressions of NADH dehydrogenase 1 (MT-ND1) and NADH dehydrogenase 6 (MT-ND6) in sperm were also detected by western blotting. In addition, sperm capacitation and the ability of sperm to bind to the zona pellucina were also evaluated. It was observed that the addition of PQQ significantly (p < 0.05) improved ram sperm motility, membrane integrity, and acrosome integrity during preservation. The percentage of sperm with high mitochondrial membrane potential in the PQQ treatment group was much higher than that in the control. In addition, supplementation of PQQ also decreased the sperm MDA and ROS levels, while increasing ATP levels. Interestingly, the levels of MT-ND1 and MT-ND6 protein in sperm treated with PQQ were also higher than that of the control. Furthermore, the addition of 100 nM PQQ to the medium decreased ROS damage in MT-ND1 and MT-ND6 proteins. The addition of 100 nM PQQ significantly (p < 0.05) increased protein tyrosine phosphorylation in ram sperm after induced capacitation. Furthermore, the value of the sperm-zona pellucida binding capacity in the 100 nM PQQ treatment group was also much higher than that of the control. Overall, during chilled ram- sperm preservation, PQQ protected ram sperm quality by quenching the ROS levels to reduce ROS damage and maintain sperm mitochondrial function, and preserved the sperm's high ability of fertilization.
Collapse
Affiliation(s)
- Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China; (Z.Z.)
| | - Wenjia Li
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China; (Z.Z.)
| | - Qitai Yang
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China; (Z.Z.)
| | - Haolong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China; (Z.Z.)
| | - Weijing Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China; (Z.Z.)
| | - Adedeji O. Adetunji
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - S. A. Masudul Hoque
- Department of Animal Breeding and Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Xin Kou
- Hongde Livestock Farm, Yingli Town, Weifang 261000, China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China; (Z.Z.)
| |
Collapse
|
3
|
Zhao Y, Yang J, Lu D, Zhu Y, Liao K, Tian Y, Yin R. The Loss-Function of KNL1 Causes Oligospermia and Asthenospermia in Mice by Affecting the Assembly and Separation of the Spindle through Flow Cytometry and Immunofluorescence. SENSORS (BASEL, SWITZERLAND) 2023; 23:2571. [PMID: 36904774 PMCID: PMC10007211 DOI: 10.3390/s23052571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
KNL1 (kinetochore scaffold 1) has attracted much attention as one of the assembly elements of the outer kinetochore, and the functions of its different domains have been gradually revealed, most of which are associated with cancers, but few links have been made between KNL1 and male fertility. Here, we first linked KNL1 to male reproductive health and the loss-function of KNL1 resulted in oligospermia and asthenospermia in mice (an 86.5% decrease in total sperm number and an 82.4% increase in static sperm number, respectively) through CASA (computer-aided sperm analysis). Moreover, we introduced an ingenious method to pinpoint the abnormal stage in the spermatogenic cycle using flow cytometry combined with immunofluorescence. Results showed that 49.5% haploid sperm was reduced and 53.2% diploid sperm was increased after the function of KNL1 was lost. Spermatocytes arrest was identified at the meiotic prophase I of spermatogenesis, which was induced by the abnormal assembly and separation of the spindle. In conclusion, we established an association between KNL1 and male fertility, providing a guide for future genetic counseling regarding oligospermia and asthenospermia, and a powerful method for further exploring spermatogenic dysfunction by utilizing flow cytometry and immunofluorescence.
Collapse
Affiliation(s)
- Yuwei Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai 201318, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Yijian Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Kai Liao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
| | - Yafei Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai 201318, China
| | - Rui Yin
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
- Reproductive Medicine Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Kowalczyk A, Gałęska E, Szul A, Łącka K, Bubel A, Araujo JP, Ullah R, Wrzecińska M. Fertility Rate and Assessment of the Cytoprotective Capacity of Various Types of Holothuroidea Extracts on Spermatozoa. Vet Sci 2022; 9:vetsci9040189. [PMID: 35448687 PMCID: PMC9030652 DOI: 10.3390/vetsci9040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
For years, compounds of natural origin have been the subject of extensive biomedical research due to very interesting, new ingredients potentially useful for various pharmaceutical, medical and industrial applications. The therapeutic properties and healing benefits of sea cucumbers may result from the presence of numerous, biologically active ingredients. Sperm subjected to processing and subsequent storage at low temperatures experience a number of damage, including the loss of the integrity of the cytoplasmic membrane, DNA and acrosome defragmentation. Therefore, the aim of this experiment was to investigate the cytoprotective potential of sea cucumber extract against cryopreserved sperm and semen fertility rate. Commercially available sea cucumber extract was taken from the cellulose shell, then 790 mg of powder was weighed out and placed in 3 glass tubes containing, respectively: 10 mL of water-glycerin solution (WG), water-ethanol (EC), glycerin-ethanol (GE), glycerin-DMSO (DG). Tubes were mixed with vortex for 3 min, then placed in a water bath and incubated for 16 h at 40 °C. Six simmental bulls, 3 years old, of known health status were used for the experiment. Semen was collected from each male once a week (for 18 weeks) using an artificial vagina. After an initial assessment of semen quality, the ejaculates were pooled to eliminate individual differences between males, then diluted to a final concentration of 80 × 106 sperm/mL with a commercial extender (Optixcell, IMV, L’Aigle, France) and divided into 16 equal samples. Control (C) without additive, the test samples contained 2, 4, 6, 8 and 10 µL WG, 2, 4, 6, 8 and 10 µL WE, 2, 4, 6, 8 and 10 µL GE, 2, 4, 6, 8 and 10 µL DG. Semen was frozen/thawed and assessed for motility, viability, DNA defragmentation, mitochondrial membrane potential and acrosome integrity. It was shown a positive effect of water-glycerin (WG) and glycerine-ethanol (GE) extracts on the efficiency of sperm preservation at low temperatures. Established that, depending on the type of prepared extract, the sea cucumber can have both cytoprotective (WG, GE, WE) and cytotoxic (DG) effects. Moreover, too high concentrations of the extract can adversely affect the sperm in terms of parameters such as viability, motility, mitochondrial potential, and the integrity of the acrosome or DNA of cells. The present study, thanks to the use of model animals to study the cytoprotective potential of the sea cucumber extract, proves that it can be a potential candidate for use in semen cryopreservation technology to improve the efficiency of storage at low temperatures. Further research is needed to optimize the composition of individual types of extracts and their effect on sperm. The highest effectiveness of female fertilization was observed when doses from GE groups (2 and 4) were used for insemination. The results of this analysis prove that the addition of the tested extract may improve the fertilization efficiency.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (E.G.); (A.B.)
- Correspondence:
| | - Elżbieta Gałęska
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (E.G.); (A.B.)
| | - Anna Szul
- Malopolska Biotechnic Centre Ltd., 36-007 Krasne, Poland; (A.S.); (K.Ł.)
| | - Katarzyna Łącka
- Malopolska Biotechnic Centre Ltd., 36-007 Krasne, Poland; (A.S.); (K.Ł.)
| | - Anna Bubel
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (E.G.); (A.B.)
| | - Jose P. Araujo
- Mountain Research Centre (CIMO), Instituto Politécnico de Viana do Castelo, Rua D. Mendo Afonso, 147, Refóios do Lima, 4990-706 Ponte de Lima, Portugal;
| | - Riaz Ullah
- Department of Chemistry, Government College Ara Khel, Kohat 26000, Khyber Pakhtunkhwa, Pakistan;
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 12234, Saudi Arabia
| | - Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology, Szczecin Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|