1
|
Huijsmans TERG, Hassan HA, Smits K, Van Soom A. Postmortem Collection of Gametes for the Conservation of Endangered Mammals: A Review of the Current State-of-the-Art. Animals (Basel) 2023; 13:ani13081360. [PMID: 37106923 PMCID: PMC10135332 DOI: 10.3390/ani13081360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The collection of gametes from recently deceased domestic and wildlife mammals has been well documented in the literature. Through the utilization of gametes recovered postmortem, scientists have successfully produced embryos in 10 different wildlife species, while in 2 of those, offspring have also been born. Thus, the collection of gametes from recently deceased animals represents a valuable opportunity to increase genetic resource banks, obviating the requirement for invasive procedures. Despite the development of several protocols for gamete collection, the refinement of these techniques and the establishment of species-specific protocols are still required, taking into account both the limitations and the opportunities. In the case of wildlife, the optimization of such protocols is impeded by the scarcity of available animals, many of which have a high genetic value that must be protected rather than utilized for research purposes. Therefore, optimizing protocols for wildlife species by using domestic species as a model is crucial. In this review, we focused on the current advancements in the collection, preservation, and utilization of gametes, postmortem, in selected species belonging to Equidae, Bovidae, and Felidae, both domestic and wildlife.
Collapse
Affiliation(s)
- Tim E R G Huijsmans
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hiba Ali Hassan
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
2
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
3
|
Howell LG, Johnston SD, O’Brien JK, Frankham R, Rodger JC, Ryan SA, Beranek CT, Clulow J, Hudson DS, Witt RR. Modelling Genetic Benefits and Financial Costs of Integrating Biobanking into the Captive Management of Koalas. Animals (Basel) 2022; 12:990. [PMID: 35454237 PMCID: PMC9028793 DOI: 10.3390/ani12080990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Zoo and wildlife hospital networks are set to become a vital component of Australia's contemporary efforts to conserve the iconic and imperiled koala (Phascolarctos cinereus). Managed breeding programs held across zoo-based networks typically face high economic costs and can be at risk of adverse genetic effects typical of unavoidably small captive colonies. Emerging evidence suggests that biobanking and associated assisted reproductive technologies could address these economic and genetic challenges. We present a modelled scenario, supported by detailed costings, where these technologies are optimized and could be integrated into conservation breeding programs of koalas across the established zoo and wildlife hospital network. Genetic and economic modelling comparing closed captive koala populations suggest that supplementing them with cryopreserved founder sperm using artificial insemination or intracytoplasmic sperm injection could substantially reduce inbreeding, lower the required colony sizes of conservation breeding programs, and greatly reduce program costs. Ambitious genetic retention targets (maintaining 90%, 95% and 99% of source population heterozygosity for 100 years) could be possible within realistic cost frameworks, with output koalas suited for wild release. Integrating biobanking into the zoo and wildlife hospital network presents a cost-effective and financially feasible model for the uptake of these tools due to the technical and research expertise, captive koala colonies, and ex situ facilities that already exist across these networks.
Collapse
Affiliation(s)
- Lachlan G. Howell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC 3125, Australia
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Stephen D. Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Justine K. O’Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society, Bradleys Head Rd., Mosman, NSW 2088, Australia;
| | - Richard Frankham
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - John C. Rodger
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Shelby A. Ryan
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Chad T. Beranek
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - John Clulow
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Donald S. Hudson
- Port Stephens Koala & Wildlife Preservation Society LTD., t/a Port Stephens Koala Hospital, One Mile, NSW 2316, Australia;
| | - Ryan R. Witt
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| |
Collapse
|
4
|
Clulow S, Clulow J, Marcec-Greaves R, Della Togna G, Calatayud NE. Common goals, different stages: the state of the ARTs for reptile and amphibian conservation. Reprod Fertil Dev 2022; 34:i-ix. [PMID: 35275052 DOI: 10.1071/rdv34n5_fo] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amphibians and reptiles are highly threatened vertebrate taxa with large numbers of species threatened with extinction. With so many species at risk, conservation requires the efficient and cost-effective application of all the tools available so that as many species as possible are assisted. Biobanking of genetic material in genetic resource banks (GRBs) in combination with assisted reproductive technologies (ARTs) to retrieve live animals from stored materials are two powerful, complementary tools in the conservation toolbox for arresting and reversing biodiversity decline for both amphibians and reptiles. However, the degree of development of the ARTs and cryopreservation technologies differ markedly between these two groups. These differences are explained in part by different perceptions of the taxa, but also to differing reproductive anatomy and biology between the amphibians and reptiles. Artificial fertilisation with cryopreserved sperm is becoming a more widely developed and utilised technology for amphibians. However, in contrast, artificial insemination with production of live progeny has been reported in few reptiles, and while sperm have been successfully cryopreserved, there are still no reports of the production of live offspring generated from cryopreserved sperm. In both amphibians and reptiles, a focus on sperm cryopreservation and artificial fertilisation or artificial insemination has been at the expense of the development and application of more advanced technologies such as cryopreservation of the female germline and embryonic genome, or the use of sophisticated stem cell/primordial germ cell cryopreservation and transplantation approaches. This review accompanies the publication of ten papers on amphibians and twelve papers on reptiles reporting advances in ARTs and biobanking for the herpetological taxa.
Collapse
Affiliation(s)
- Simon Clulow
- Centre for Conservation Ecology & Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - John Clulow
- University of Newcastle, Conservation Biology Research Group, University Drive, Callaghan, NSW 2308, Australia
| | | | - Gina Della Togna
- Universidad Interamericana de Panama, Direccion de Investigacion, Campus Central, Avenida Ricardo J. Alfaro, Panama City, Panama; and Smithsonian Tropical Research Institute, Panama Amphibian Rescue and Conservation Project, Panama
| | - Natalie E Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual valley Road, Escondido, CA 92025, USA; and Conservation Science Network, 24 Thomas Street, Mayfield, NSW 2304, Australia
| |
Collapse
|