1
|
Cwykiel J, Madajka-Niemeyer M, Siemionow M. Development of Donor Recipient Chimeric Cells of bone marrow origin as a novel approach for tolerance induction in transplantation. Stem Cell Investig 2021; 8:8. [PMID: 33969113 DOI: 10.21037/sci-2020-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Background Cell therapies and chimerism-based strategies are currently the most successful approach for tolerance induction in transplantation. This study aimed to establish and characterize novel Donor Recipient Chimeric Ccell (DRCC) therapy of bone marrow (BM) origin presenting donor-recipient phenotype to support tolerance induction. Methods Ex vivo fusions of fully MHC-mismatched BM cells from ACI (RT1a) and Lewis (RT1l) rats were performed using polyethylene-glycol (PEG). The creation of rat DRCC was tested by flow cytometry (FC), confocal microscopy and PCR. FC characterized DRCC's phenotype (CD3, CD4, CD8, CD45, CD90, CD11b/c, CD45RA, OX-82, or CD4/CD25) and apoptosis, while mixed lymphocyte reaction assessed DRCC's immunogenicity and colony forming unit assay tested DRCC's differentiation and proliferation. DRCC's polyploidy was evaluated using Hoechst33342 staining and COMET assay tested genotoxicity of fusion procedure. ELISA analyzed the secretion of IL-2, IL-4, IL-10, TGFß1, IFNγ and TNFα by DRCC at day 1, 5 and 14 post-fusion. The DRCC's phenotype after long-term culturing was assessed by reverse-transcription PCR. Results The chimeric state of DRCC was confirmed. Fusion did not change the expression of hematopoietic markers compared to BM controls. Although an increased number of early and late apoptotic (Annexin V+/Sytox blue- and Annexin V+/Sytox blue+, respectively) DRCC was detected at 24h post-fusion, the number significantly decreased at day 5 (38.4%±3.1% and 22.6%±2.5%, vs. 28.3%±2.5% and 13.9%±2.6%, respectively, P<0.05). DRCC presented decreased immunogenicity, increased expression of IL-10 and TGFβ1 and proliferative potential comparable to BM controls. The average percentage of tetraploid DRCC was 3.1%±0.2% compared to 0.96%±0.1% in BM controls. The lack of damage to the DRCC's DNA content supported the DRCC's safety. In culture, DRCC maintained proliferation for up to 28 days while preserving hematopoietic profile. Conclusions This study confirmed feasibility of DRCC creation via ex vivo PEG mediated fusion. The created DRCC revealed pro-tolerogenic properties indicating potential immunomodulatory effect of DRCC therapy when applied in vivo to support tolerance induction in solid organ and vascularized composite allograft transplantation.
Collapse
Affiliation(s)
- Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Xu Q, Fang M, Zhu J, Dong H, Cao J, Yan L, Leonard F, Oppel F, Sudhoff H, Kaufmann AM, Albers AE, Qian X. Insights into Nanomedicine for Immunotherapeutics in Squamous Cell Carcinoma of the head and neck. Int J Biol Sci 2020; 16:2506-2517. [PMID: 32792853 PMCID: PMC7415431 DOI: 10.7150/ijbs.47068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapies such as immune checkpoint blockade benefit only a portion of patients with head and neck squamous cell carcinoma. The multidisciplinary field of nanomedicine is emerging as a promising strategy to achieve maximal anti-tumor effect in cancer immunotherapy and to turn non-responders into responders. Various methods have been developed to deliver therapeutic agents that can overcome bio-barriers, improve therapeutic delivery into the tumor and lymphoid tissues and reduce adverse effects in normal tissues. Additional modification strategies also have been employed to improve targeting and boost cytotoxic T cell-based immune responses. Here, we review the state-of-the-art use of nanotechnologies in the laboratory, in advanced preclinical phases as well as those running through clinical trials assessing their advantages and challenges.
Collapse
Affiliation(s)
- Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Jing Zhu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Haoru Dong
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Lin Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Fransisca Leonard
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, USA
| | - Felix Oppel
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| |
Collapse
|
3
|
Abstract
We present a microfluidic chip that enables electrofusion of cells in microdroplets, with exchange of nuclear components. It is shown, to our knowledge for the first time, electrofusion of two HL60 cells, inside a microdroplet. This is the crucial intermediate step for controlled hybridoma formation where a B cell is electrofused with a myeloma cell. We use a microfluidic device consisting of a microchannel structure in PDMS bonded to a glass substrate through which droplets with two differently stained HL60 cells are transported. An array of six recessed platinum electrode pairs is used for electrofusion. When applying six voltage pulses of 2–3 V, the membrane electrical field is about 1 MV/cm for 1 ms. This results in electrofusion of these cells with a fusion yield of around 5%. The operation with individual cell pairs, the appreciable efficiency and the potential to operate in high-throughput (up to 500 cells sec−1) makes the microdroplet fusion technology a promising platform for cell electrofusion, which has the potential to compete with the conventional methods. Besides, this platform is not restricted to cell fusion but is also applicable to various other cell-based assays such as single cell analysis and differentiation assays.
Collapse
|
4
|
Shao F, Lv M, Zheng Y, Jiang J, Wang Y, Lv L, Wang J. The anti-tumour activity of rLj-RGD4, an RGD toxin protein from Lampetra japonica, on human laryngeal squamous carcinoma Hep-2 cells in nude mice. Biochimie 2015; 119:183-91. [DOI: 10.1016/j.biochi.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 11/03/2015] [Indexed: 01/15/2023]
|
5
|
Siemionow MZ. A systematic review and meta-analysis on the prevalence of Dupuytren disease in the general population of Western countries. Plast Reconstr Surg 2014. [PMID: 24263394 PMCID: PMC7121457 DOI: 10.1007/978-1-4471-6335-0_72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dupuytren disease is a fibroproliferative disease of palmar fascia of the hand. Its prevalence has been the subject of several reviews; however, an accurate description of the prevalence range in the general population--and of the relation between age and disease--is lacking. METHODS Embase and PubMed were searched using database-specific Medical Subject Headings; titles and abstracts were searched for the words "Dupuytren," "incidence," and "prevalence." Two reviewers independently assessed the articles using inclusion and exclusion criteria, and rated the included studies with a quality assessment instrument. In a meta-analysis, the median prevalence, as a function of age by sex, was estimated, accompanied by 95 percent prediction intervals. The observed heterogeneity in prevalence was investigated with respect to study quality and geographic location. RESULTS Twenty-three of 199 unique identified articles were included. The number of participants ranged from 37 to 97,537, and age ranged from 18 to 100 years. Prevalence varied from 0.6 to 31.6 percent. The quality of studies differed but could not explain the heterogeneity among studies. Mean prevalence was estimated as 12, 21, and 29 percent at ages 55, 65, and 75 years, respectively, based on the relation between age and prevalence determined from 10 studies. CONCLUSIONS The authors describe a prevalence range of Dupuytren disease in the general population of Western countries. The relation between age and prevalence of Dupuytren disease is given according to sex, including 95 percent prediction intervals. It is possible to determine disease prevalence at a certain age for the total population, and for men and women separately.
Collapse
Affiliation(s)
- Maria Z. Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois USA
| |
Collapse
|
6
|
A systematic review and meta-analysis on the prevalence of Dupuytren disease in the general population of Western countries. Plast Reconstr Surg 2014; 133:593-603. [PMID: 24263394 DOI: 10.1097/01.prs.0000438455.37604.0f] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dupuytren disease is a fibroproliferative disease of palmar fascia of the hand. Its prevalence has been the subject of several reviews; however, an accurate description of the prevalence range in the general population--and of the relation between age and disease--is lacking. METHODS Embase and PubMed were searched using database-specific Medical Subject Headings; titles and abstracts were searched for the words "Dupuytren," "incidence," and "prevalence." Two reviewers independently assessed the articles using inclusion and exclusion criteria, and rated the included studies with a quality assessment instrument. In a meta-analysis, the median prevalence, as a function of age by sex, was estimated, accompanied by 95 percent prediction intervals. The observed heterogeneity in prevalence was investigated with respect to study quality and geographic location. RESULTS Twenty-three of 199 unique identified articles were included. The number of participants ranged from 37 to 97,537, and age ranged from 18 to 100 years. Prevalence varied from 0.6 to 31.6 percent. The quality of studies differed but could not explain the heterogeneity among studies. Mean prevalence was estimated as 12, 21, and 29 percent at ages 55, 65, and 75 years, respectively, based on the relation between age and prevalence determined from 10 studies. CONCLUSIONS The authors describe a prevalence range of Dupuytren disease in the general population of Western countries. The relation between age and prevalence of Dupuytren disease is given according to sex, including 95 percent prediction intervals. It is possible to determine disease prevalence at a certain age for the total population, and for men and women separately.
Collapse
|
7
|
Kemna EWM, Wolbers F, Vermes I, van den Berg A. On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation. Electrophoresis 2011; 32:3138-46. [DOI: 10.1002/elps.201100227] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/18/2011] [Accepted: 06/01/2011] [Indexed: 11/08/2022]
|
8
|
Immunologic monitoring of cellular responses by dendritic/tumor cell fusion vaccines. J Biomed Biotechnol 2011; 2011:910836. [PMID: 21541197 PMCID: PMC3085507 DOI: 10.1155/2011/910836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/11/2010] [Accepted: 02/27/2011] [Indexed: 12/22/2022] Open
Abstract
Although dendritic cell (DC)- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST) and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.
Collapse
|
9
|
Dendritic Cell-Tumor Cell Fusion Vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:177-86. [DOI: 10.1007/978-94-007-0763-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Regulation of tumor immunity by tumor/dendritic cell fusions. Clin Dev Immunol 2010; 2010:516768. [PMID: 21048993 PMCID: PMC2964897 DOI: 10.1155/2010/516768] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
Abstract
The goal of cancer vaccines is to induce antitumor immunity that ultimately will reduce tumor burden in tumor environment. Several strategies involving dendritic cells- (DCs)- based vaccine incorporating different tumor-associated antigens to induce antitumor immune responses against tumors have been tested in clinical trials worldwide. Although DCs-based vaccine such as fusions of whole tumor cells and DCs has been proven to be clinically safe and is efficient to enhance antitumor immune responses for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens (TAAs), only a limited success has occurred in clinical trials. This paper reviews tumor immune escape and current strategies employed in the field of tumor/DC fusions vaccine aimed at enhancing activation of TAAs-specific cytotoxic T cells in tumor microenvironment.
Collapse
|
11
|
Antigen-specific polyclonal cytotoxic T lymphocytes induced by fusions of dendritic cells and tumor cells. J Biomed Biotechnol 2010; 2010:752381. [PMID: 20379390 PMCID: PMC2850552 DOI: 10.1155/2010/752381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 01/21/2010] [Accepted: 02/01/2010] [Indexed: 01/26/2023] Open
Abstract
The aim of cancer vaccines is induction of tumor-specific cytotoxic T lymphocytes (CTLs) that can reduce the tumor mass. Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Thus, DCs-based vaccination represents a potentially powerful strategy for induction of antigen-specific CTLs. Fusions of DCs and whole tumor cells represent an alternative approach to deliver, process, and subsequently present a broad spectrum of antigens, including those known and unidentified, in the context of costimulatory molecules. Once DCs/tumor fusions have been infused back into patient, they migrate to secondary lymphoid organs, where the generation of antigen-specific polyclonal CTL responses occurs. We will discuss perspectives for future development of DCs/tumor fusions for CTL induction.
Collapse
|
12
|
Cancer vaccine by fusions of dendritic and cancer cells. Clin Dev Immunol 2010; 2009:657369. [PMID: 20182533 PMCID: PMC2825547 DOI: 10.1155/2009/657369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/09/2009] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived costimulatory molecules. DCs/tumor fusion vaccine stimulates potent antitumor immunity in the animal tumor models. In the human studies, T cells stimulated by DC/tumor fusion cells are effective in lysis of tumor cells that are used as the fusion partner. In the clinical trials, clinical and immunological responses were observed in patients with advanced stage of malignant tumors after being vaccinated with DC/tumor fusion cells, although the antitumor effect is not as vigorous as in the animal tumor models. This review summarizes recent advances in concepts and techniques that are providing new impulses to DCs/tumor fusions-based cancer vaccination.
Collapse
|
13
|
Immunotherapy in head and neck cancer: current practice and future possibilities. The Journal of Laryngology & Otology 2008; 123:19-28. [PMID: 18761763 DOI: 10.1017/s0022215108003356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The survival of patients with head and neck squamous cell carcinoma has changed little over the last 30 years. However, with recent advances in the fields of cellular and molecular immunology, there is renewed optimism with regards to the development of novel methods of early diagnosis, prognosis estimation and treatment improvement for patients with head and neck squamous cell carcinoma. Here, we present a critical review of the recent advances in tumour immunology, and of the current efforts to apply new immunotherapeutic techniques in the treatment of head and neck squamous cell carcinoma.
Collapse
|
14
|
Tao L, Zhou L, Zheng L, Yao M. Elemene displays anti-cancer ability on laryngeal cancer cells in vitro and in vivo. Cancer Chemother Pharmacol 2005; 58:24-34. [PMID: 16283311 DOI: 10.1007/s00280-005-0137-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Accepted: 10/05/2005] [Indexed: 11/28/2022]
Abstract
PURPOSE The goal of this study is to investigate the inhibitory effects and mechanism of elemene on the growth of laryngeal cancer cells in vitro and in vivo. METHODS Laryngeal cancer cells (HEp-2 cells) were grown in elemene, cisplatin, or a combination of the drugs. The cytotoxic, or apoptotic, effects of elemene on the cells were evaluated by a 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide assay, flow cytometry, and a caspase-3 activity assay. A Western blot was used to semi-quantify the protein expression of eukaryotic initiation factors (eIF4E and eIF4G), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF); RT-PCR analysis semi-quantified the mRNA transcript expression of bFGF and VEGF. The HEp-2 cells were transplanted subcutaneously to BALB/c nude mice to produce solid tumors. Elemene and cisplatin were administered to the mice either as individual drugs or in combination. The tumors were excised and immunostained to determine the effect each drug had on tumor size, eIF levels, angiogenic factors, and microvessel density (MVD). RESULTS Elemene inhibited the growth of HEp-2 cells in vitro in a dose- and time-dependent manner with an IC(50) of 346.5 microM (24 h incubation). Increased apoptosis was observed in elemene-administered cells. Elemene is suspected to enhance caspase-3 activity, and thus inhibit protein expression of eIFs (4E, 4G), bFGF, and VEGF. In vivo, the growth of HEp-2 cell-transplanted tumors in nude mice was inhibited by intraperitoneal injection of elemene. Compared with control groups, elemene significantly inhibited the protein expression of eIFs (4E and 4G), bFGF, and VEGF and decreased the MVD. CONCLUSIONS Elemene inhibits the growth of HEp-2 cells in vitro and in vivo. These data provide useful information for further clinical study on the treatment of LSCC by elemene.
Collapse
Affiliation(s)
- Lei Tao
- Department of otolaryngology-HNS, Eye, Ear, Nose and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | | | | | | |
Collapse
|
15
|
Sukhorukov VL, Reuss R, Zimmermann D, Held C, Müller KJ, Kiesel M, Gessner P, Steinbach A, Schenk WA, Bamberg E, Zimmermann U. Surviving High-Intensity Field Pulses: Strategies for Improving Robustness and Performance of Electrotransfection and Electrofusion. J Membr Biol 2005; 206:187-201. [PMID: 16456714 DOI: 10.1007/s00232-005-0791-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/08/2005] [Indexed: 11/25/2022]
Abstract
Electrotransfection and electrofusion, both widely used in research and medical applications, still have to face a range of problems, including the existence of electroporation-resistant cell types, cell mortality and also great batch-to-batch variations of the transfection and fusion yields. In the present study, a systematic analysis of the parameters critical for the efficiency and robustness of electromanipulation protocols was performed on five mammalian cell types. Factors examined included the sugar composition of hypotonic pulse media (trehalose, sorbitol or inositol), the kinetics of cell volume changes prior to electropulsing, as well as the growth medium additives used for post-pulse cell cultivation. Whereas the disaccharide trehalose generally allowed regulatory volume decrease (RVD), the monomeric sugar alcohols sorbitol and inositol inhibited RVD or even induced secondary swelling. The different volume responses could be explained by the sugar selectivity of volume-sensitive channels (VSC) in the plasma membrane of all tested cell types. Based on the volumetric data, highest transfection and fusion yields were mostly achieved when the target cells were exposed to hypotonicity for about 2 min prior to electropulsing. Longer hypotonic treatment (10-20 min) decreased the yields of viable transfected and hybrid cells due to (1) the cell size reduction upon RVD (trehalose) or (2) the excessive losses of cytosolic electrolytes through VSC (inositol/sorbitol). Doping the plasma membrane with lipophilic anions prevented both cell shrinkage and ion losses (probably due to VSC inhibition), which in turn resulted in increased transfection and fusion efficiencies.
Collapse
Affiliation(s)
- V L Sukhorukov
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
O-Sullivan I, Ng LK, Martinez DM, Kim TS, Chopra A, Cohen EP. Immunity to squamous carcinoma in mice immunized with dendritic cells transfected with genomic DNA from squamous carcinoma cells. Cancer Gene Ther 2005; 12:825-34. [PMID: 15891775 DOI: 10.1038/sj.cgt.7700847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immunotherapy of squamous cell carcinoma (SCC) at an early stage of the disease increases the likelihood of success. We report a new vaccination strategy designed to prepare SCC vaccines from microgram amounts of tumor tissue, enabling the treatment of patients with minimal residual disease. The vaccine was prepared by transfer of sheared genomic DNA-fragments (25 kb) from KLN205 cells, an SCC cell line of DBA/2 mouse origin, into syngeneic bone marrow-derived mature dendritic cells (DCs). More than 90% of the transfected DCs took up DNA from the neoplasm and transferred genes were expressed as protein. The DCs expressed CD11c, CD11b, and the costimulatory molecules CD40, CD80 and CD86, characteristic of mature DCs. Syngeneic DBA/2J mice, highly susceptible to the growth of KLN205 cells, were injected intravenously (i.v.) with the transfected DCs, followed by a subcutaneous (s.c.) injection of the tumor cells. The strong immunogenic properties of the transfected cells were indicated by the finding that the survival of the tumor-bearing mice was prolonged (P<.001), relative to that of mice in various control groups. Enzyme-linked immuno spot (ELISPOT IFN-gamma) assays revealed the activation of cell-mediated immunity directed toward the SCC in mice immunized with the transfected DCs. Two independent in vitro cytotoxicity assays indicated the presence of robust cell-mediated immunity directed toward the SCC in mice immunized with the transfected cells.
Collapse
Affiliation(s)
- InSug O-Sullivan
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Weise JB, Maune S, Kabelitz D, Heiser A. [Significance of dendritic cells for the immunotherapy of tumors]. HNO 2005; 53:117-20. [PMID: 15657753 DOI: 10.1007/s00106-004-1201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- J B Weise
- Klinik für Hals-, Nasen-,Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Schleswig-Holstein, Campus Kiel.
| | | | | | | |
Collapse
|